《机器学习》第一节:相关概念的理解

文章介绍了如何使用jupyterlab和miniconda搭建Python3.8.1的机器学习学习环境,重点阐述了训练集、测试集和验证集的作用,以及样本、属性、特征等相关概念,强调了理解基础概念在机器学习中的重要性。
摘要由CSDN通过智能技术生成

《机器学习》第一课:学习环境搭建及相关概念的理解

学习环境搭建

  • 学习环境:jupyterlab
  • 实现语言:Python

建议安装顺序:
在这里插入图片描述
本次机器学习课程本人所用python版本为3.8.1,IDE为jupyterlab,使用miniconda搭建环境.

关于conda工具的常用命令:
请添加图片描述
比如本次建立的工作环境为machinelearing,则命令如下:
conda create -n machinelearing python=3.8.1
突然发现我的learning好像写错了┭┮﹏┭┮,已经建好了就不管了呜呜


相关概念的理解

  • 训练集:用于训练模型(拟合参数):即模型拟合的数据样本集合,如通过训练拟合一些参数来建立一个分类器。
  • 测试集:用来评估模最终模型的性能如何(评价模型好坏):测试集没有参于训练,主要是测试训练好的模型的准确能力等,但不能作为调参、选择特征等算法相关的选择的依据。说白了就只用于评价模型好坏的一个数据集。
  • 验证集:用于确定网络结构或者控制模型复杂程度的超参数(拟合超参数):是模型训练过程中单独留出的样本集,它可以用于调整模型的超参数和用于对模型的能力进行初步评估。 通常用来在模型迭代训练时,用以验证当前模型泛化能力(准确率,召回率等),防止过拟合的现象出现,以决定如何调整超参数。

请添加图片描述

  • 样本(sample) :数据表的一行数据或记录。
  • 属性(attribute):一行数据具有的指标。
  • 特征(feature):同属性。
  • 属性值 :属性的具体取值,可以是集合也可以是范围。
  • 属性空间:所有属性的所有可能取值组成的空间。
  • 样本空间:所有样本组成的空间。
  • 特征向量(feature vector):一行数据的特征组成的向量。
  • 输入空间:可以近似理解为一个函数的定义域。
  • 输出空间:可以近似理解为一个函数的值域,映射关系称为假设

上述概念仅为机器学习过程中的一小部分,日后应注重基本概念的积累,在掌握模型的基础上加以深刻理解。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜鸡小戴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值