【机器学习】均方误差(MSE:Mean Squared Error)

均方误差(Mean Squared Error, MSE)是衡量预测值与真实值之间差异的一种方法。在统计学和机器学习中,MSE 是一种常见的损失函数,用于评估模型的预测准确性。

均方误差的定义

假设有一组真实值 y_1, y_2, \ldots, y_n​ 和模型预测的对应值 \hat{y}_1, \hat{y}_2, \ldots, \hat{y}_n​。均方误差的定义如下:

\text{MSE} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2

其中:

  • y_i 是第 i 个真实值。
  • \hat{y}_i 是第 i 个预测值。
  • n 是数据点的总数。

公式解析

  • 误差:每个预测值与真实值的差异称为误差,记为 y_i - \hat{y}_i
  • 平方:每个误差的平方 (y_i - \hat{y}_i)^2 消除了正负误差的抵消作用,保证误差总量为正。
  • 均值:将所有平方误差求和并取平均,以得到整体误差的平均值,这样可以反映出模型的整体预测误差。

特点

  • 非负性:均方误差总是非负的,因为平方项总是非负。
  • 敏感度:MSE 对于离群值(极大或极小误差)非常敏感,因为平方会放大较大误差的影响。

均方误差的应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值