均方误差(Mean Squared Error, MSE)是衡量预测值与真实值之间差异的一种方法。在统计学和机器学习中,MSE 是一种常见的损失函数,用于评估模型的预测准确性。
均方误差的定义
假设有一组真实值 和模型预测的对应值
。均方误差的定义如下:
其中:
是第
个真实值。
是第
个预测值。
是数据点的总数。
公式解析
- 误差:每个预测值与真实值的差异称为误差,记为
。
- 平方:每个误差的平方
消除了正负误差的抵消作用,保证误差总量为正。
- 均值:将所有平方误差求和并取平均,以得到整体误差的平均值,这样可以反映出模型的整体预测误差。
特点
- 非负性:均方误差总是非负的,因为平方项总是非负。
- 敏感度:MSE 对于离群值(极大或极小误差)非常敏感,因为平方会放大较大误差的影响。