描述
16世纪法国外交家Blaise de Vigenère设计了一种多表密码加密算法——Vigenère密码。Vigenère密码的加密解密算法简单易用,且破译难度比较高,曾在美国南北战争中为南军所广泛使用。
在密码学中,我们称需要加密的信息为明文,用M表示;称加密后的信息为密文,用C表示;而密钥是一种参数,是将明文转换为密文或将密文转换为明文的算法中输入的数据,记为k。 在Vigenère密码中,密钥k是一个字母串,k=k1k2…kn。当明文M=m1m2…mn时,得到的密文C=c1c2…cn,其中ci=mi®ki,运算®的规则如下表所示:
Vigenère加密在操作时需要注意:
1. ®运算忽略参与运算的字母的大小写,并保持字母在明文M中的大小写形式;
2. 当明文M的长度大于密钥k的长度时,将密钥k重复使用。
例如,明文M=Helloworld,密钥k=abc时,密文C=Hfnlpyosnd。
明文 | H | e | l | l | o | w | o | r | l | d |
密钥 | a | b | c | a | b | c | a | b | c | a |
密文 | H | f | n | l | p | y | o | s | n | d |
输入
输入共2行。
第一行为一个字符串,表示密钥k,长度不超过100,其中仅包含大小写字母。第二行为一个字符串,表示经加密后的密文,长度不超过1000,其中仅包含大小写字母。
对于100%的数据,输入的密钥的长度不超过100,输入的密文的长度不超过1000,且都仅包含英文字母。
输出
输出共1行,一个字符串,表示输入密钥和密文所对应的明文。
样例输入
#1 CompleteVictory Yvqgpxaimmklongnzfwpvxmniytm #2//这个样例是我自己添加的 abcd I love openjudge
样例输出
#1 Wherethereisawillthereisaway #2 I kmse nnbnisagd
include<bits/stdc++.h>
using namespace std;
int main()
{
int i=0,j=0,len=0;
char m[1005]={0},k[105]={0},c[1005]={0}; //明文m,密文c,密钥k
scanf("%s\n",k); //输入密钥
fgets(c,1005,stdin); //输入密文
len=strlen(k);
for (i=0;i<strlen(c);i++) //依次找到明文
{
if (k[j%len]>='a'&&k[j%len]<='z') //密钥是小写字母时
//之所以用j%len是为了表示密钥长度短于密文的时候,密钥可以循环使用
{
if (c[i]>='a'&&c[i]<='z')
{
m[i]=(26+c[i]-'a'-(k[j%len]-'a'))%26+'a';
//通过观察变化过程可以得到明文的表示方式【这里之所以加26,是问了应对c[i]-'a'-(k[j%len]-'a')<0的情况】,例如c[i]=b,k[j%len]=z.
//*****注意这里加26和取绝对值是不一样的
j++;
}
else if (c[i]>='A'&&c[i]<='Z')
{
m[i]=(26+c[i]-'A'-(k[j%len]-'a'))%26+'A';
j++;
}
else //密文中不是字母的情况,例如:‘ ’(空格)
{
m[i]=c[i];
}
}
else if (k[j%len]>='A'&&k[j%len]<='Z') //密钥是大写字母时(情况如上面相似)
{
if (c[i]>='a'&&c[i]<='z')
{
m[i]=(26+c[i]-'a'-(k[j%len]-'A'))%26+'a';
j++;
}
else if (c[i]>='A'&&c[i]<='Z')
{
m[i]=(26+c[i]-'A'-(k[j%len]-'A'))%26+'A';
j++;
}
else
{
m[i]=c[i];
}
}
}
for (i=0;i<strlen(c);i++) //打印结果。
printf("%c",m[i]);
return 0;
}