吃瓜 | Task5 软间隔与支持向量回归

算法原理

  • 数据集线性不可分情况下,要允许支持向量机容错

软间隔

  1. 允许部分样本不满足
    m i n w , b 1 2 ∥ w ∥ 2     s . t .    y i ( w T x + b ) ≥ 1 , i = 1 , 2 ⋅ ⋅ ⋅ , m \underset{w,b}{min}\frac{1}{2}\Vert w \Vert^2~~~s.t.~~y_i(w^Tx+b )\ge1,i=1,2···,m w,bmin21w2   s.t.  yiwTx+b1,i=1,2⋅⋅⋅,m
  2. 但是还是要最小化损失
  • 满足条件损失为0;
  • 当不满足时损失不为0
  • (选)损失与其违反约束条件的程度成正比
  1. m i n w , b 1 2 ∥ w ∥ 2 + C ∑ i = 1 m ℓ 0 / 1 ( y i ( w T x i + b ) − 1 ) \underset{w,b}{min}\frac{1}{2}\Vert w \Vert^2+C\sum_{i=1}^m \ell_{0/1}(y_i(w^Tx_i+b)-1) w,bmin21w2+Ci=1m0/1(yi(wTxi+b)1)其中 ℓ 0 / 1 \ell_{0/1} 0/1是“0/1损失条件”, z = y i ( w T x i + b ) − 1 z=y_i(w^Tx_i+b)-1 z=yi(wTxi+b)1
    ℓ 0 / 1 ( z ) = { 1 , i f    z < 0 0 , i f    z ⩾ 0 \ell _{0/1}\left( z \right) =\left\{ \begin{array}{c} 1,if\,\,z<0\\ 0,if\,\,z\geqslant 0\\ \end{array} \right. \\ 0/1(z)={1,ifz<00,ifz0
    其中C用来调节损失函数权重,当其趋近于无穷大时,变成严格执行的约束调节成为硬间隔。
  2. 由于 ℓ 0 / 1 \ell_{0/1} 0/1性质不佳,常用其他函数替代;软间隔支持向量机选用:hinge(合页)损失[连续凸函数] h i n g e 损失 : ℓ h i n g e ( z ) = m a x ( 0 , 1 − z ) hinge损失:\ell_{hinge}(z)=max(0,1-z) hinge损失:hinge(z)=max(0,1z) m i n w , b 1 2 ∥ w ∥ 2 + C ∑ i = 1 m m a x ( 0 , 1 − y i ( w T x i + b ) ) \underset{w,b}{min}\frac{1}{2}\Vert w \Vert^2+C\sum_{i=1}^m max(0,1-y_i(w^Tx_i+b)) w,bmin21w2+Ci=1mmax(01yi(wTxi+b))
  3. 引入松弛变量 ξ i = m a x ( 0 , 1 − y i ( w T x i + b ) \xi_i=max(0,1-y_i(w^Tx_i+b) ξi=max(01yi(wTxi+b)
    优化问题进一步等价
    m i n w , b 1 2 ∥ w ∥ 2 + C ∑ i = 1 m ξ i \underset{w,b}{min}\frac{1}{2}\Vert w \Vert^2+C\sum_{i=1}^m \xi_i w,bmin21w2+Ci=1mξi s . t .   − y i ( w T x i + b ) ≥ 1 − ξ i , ξ i ≥ 0 , i = 1 , 2 , . . . , m s.t.~-y_i(w^Tx_i+b)\ge1-\xi_i,\xi_i\ge0,i=1,2,...,m s.t. yi(wTxi+b)1ξi,ξi0,i=1,2,...,m

支持向量回归

线性回归:用线或者超平面拟合训练样本
SVR:用一个以 f ( x ) = w T x + b f(x)=w^Tx+b f(x)=wTx+b为中心,宽度为 2 ϵ 2\epsilon 2ϵ的间隔带来拟合训练样本

  • 核心思想:不在带上的点以偏离距离为损失,最小化损失,求取最优带
  1. SVR最优化问题
    m i n w , b 1 2 ∥ w ∥ 2 + C ∑ i = 1 m ℓ ϵ ( f ( x i ) − y i ) \underset{w,b}{min}\frac{1}{2}\Vert w \Vert^2+C\sum_{i=1}^m \ell_{\epsilon}(f(x_i)-y_i) w,bmin21w2+Ci=1mϵ(f(xi)yi)
  • 经验风险:其中 ℓ ϵ ( z ) \ell_{\epsilon}(z) ϵ(z)是“ ϵ 不敏感损失函数 \epsilon不敏感损失函数 ϵ不敏感损失函数”( 类比均方误差损失),
    ℓ ϵ ( z ) = { 0 ,     i f    ∣ z ∣ ≤ ϵ ∣ z ∣ − ϵ , i f    ∣ z ∣ > ϵ \ell _{\epsilon}\left( z \right) =\left\{ \begin{array}{c} 0,~~~if\,\,|z|\le\epsilon\\ |z|-\epsilon,if\,\,|z|> \epsilon \\ \end{array} \right. \\ ϵ(z)={0,   ifzϵzϵ,ifz>ϵ
  • 机构风险:
    1 2 ∥ w ∥ 2 \frac{1}{2}\Vert w \Vert^2 21w2为L2正则项,防止过拟合
  1. 引入松弛变量 ξ i = ℓ ϵ ( f ( x i ) − y i ) \xi_i=\ell_{\epsilon} (f(x_i)-y_i) ξi=ϵ(f(xi)yi)
    优化问题进一步等价
    m i n w , b 1 2 ∥ w ∥ 2 + C ∑ i = 1 m ξ i \underset{w,b}{min}\frac{1}{2}\Vert w \Vert^2+C\sum_{i=1}^m \xi_i w,bmin21w2+Ci=1mξi s . t .   − ϵ − ξ i ≤ f ( x i ) − y i ≤ ϵ + ξ i , ξ i ≥ 0 , i = 1 , 2 , . . . , m s.t.~-\epsilon-\xi_i\le f(x_i)-y_i\le\epsilon+\xi_i,\xi_i\ge0,i=1,2,...,m s.t. ϵξif(xi)yiϵ+ξi,ξi0,i=1,2,...,m
    对于上下越界点采取不同的松弛变量
    m i n w , b 1 2 ∥ w ∥ 2 + C ∑ i = 1 m ( ξ i + ξ ^ i ) \underset{w,b}{min}\frac{1}{2}\Vert w \Vert^2+C\sum_{i=1}^m (\xi_i+\hat \xi_i) w,bmin21w2+Ci=1m(ξi+ξ^i) s . t .   − ϵ − ξ ^ i ≤ f ( x i ) − y i ≤ ϵ + ξ i , ξ i ≥ 0 , ξ ^ i ≥ 0 , i = 1 , 2 , . . . , m s.t.~-\epsilon-\hat \xi_i\le f(x_i)-y_i\le\epsilon+\xi_i,\xi_i\ge0,\hat \xi_i\ge0,i=1,2,...,m s.t. ϵξ^if(xi)yiϵ+ξi,ξi0,ξ^i0,i=1,2,...,m

学习笔记来源,指路☟
https://www.bilibili.com/video/BV1Mh411e7VU?p=10

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值