Task 3 基于支持向量机的分类预测

本文详细介绍了支持向量机(SVM),从二分类问题出发,探讨了间隔和支撑向量的概念,然后讲解了SVM的对偶问题及其拉格朗日乘子法,最后引入了核函数,解释了如何通过核函数解决非线性分类问题。SVM通过最大化间隔寻找最优分类超平面,并在高维空间中通过核函数实现非线性映射,是机器学习中重要的分类算法。
摘要由CSDN通过智能技术生成

1、支持向量机介绍

1.1 二分类问题延展

首先我们在去了解支持向量机的作用原理之前,我们应该先弄明白支持向量机是解决分类问题的。先前我们在Task1逻辑回归解决二分类问题中,我们在二维情况下,要找到一条线将不同类的样本划分开来。从图中不难看出,仅仅是将两种不同类样本划分开,可以有很多种选择。那究竟哪一种比较好?或者说我们应该如何找出最优的划分曲线。这就是支持向量机要做的东西。
在这里插入图片描述

1.2 间隔、支持向量、支持向量机模型

1.2.1 间隔与支持向量

在样本空间中,划分超平面可以用线性方程来表示: w T x + b = 0 w^{T}x+b=0 wTx+b=0。这个超平面完全由w w = ( w 1 ; w 2 ; w 3 ; . . . ; w d ) w=(w_{1};w_{2};w_{3};...;w_{d}) w=(w1;w2;w3;...;wd))和b来决定,其中w为超平面的法向量,b为位移项。
我们再考虑用逻辑回归进行分类时,我们将 z > 0 z>0 z>0时,令 y = 0 y=0 y=0 z > 0 z>0 z>0时,令 y = 1 y=1 y=1。参考于此,我们同样方法得到下列式子 { w T x i ≥ + 1 , y i = + 1 w T x i ≤ − 1 , y i = − 1 \begin{cases} & \text{} w^{T}x_{i}\geq +1,y_{i}=+1\\ & \text{} w^{T}x_{i}\leq -1 ,y_{i}=-1 \end{cases} { wTxi+1,yi=+1wTxi1,yi=1
在这里插入图片描述
根据上式,其中 γ = 2 ∥ w ∥ \gamma =\frac{2}{\left \| w \right \|} γ=w2 ∥ w ∥ {\left \| w \right \|} w是二阶范数, ∥ w ∥ = w T w {\left \| w \right \|}=\sqrt{w^{T}w} w=wTw )被称为间隔,而画红圈的样本是恰好使得上式的等号成立,它们就被成为支持向量
关于间隔是如何求出来的,是要根据样本空间上的点到超平面的距离公式算出来的。距离公式是: r = w T x + b ∥ w ∥ r=\frac{w^{T}x+b}{\left \| w \right \|} r=wwTx+b,推导如下:
在这里插入图片描述
我们已经知道 w w w是划分超平面的法向量,对于求点 x x x到超平面 w T x + b = 0 w^{T}x+b=0 wTx+b=0的距离,就是求 x x 0 → \overrightarrow{xx_{0}} xx0 w ⃗ \vec{w} w 上的投影。
于是,有:
r = ( x ⃗ − x 0 ⃗ ) ⋅ w ⃗ ∣ ∣ w ⃗ ∣ ∣ r=(\vec{x}-\vec{x_{0}})\cdot \frac{\vec{w}}{||\vec{w}||} r=(x x0 )w w
w T x 0 + b = 0 w^{T}x_{0}+b=0 wTx0+b=0,代入上式
得: r = w T x + b ∥ w ∥ r=\frac{w^{T}x+b}{\left \| w \right \|}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值