传送门:活动 - AcWing
题目:
随着白天越来越短夜晚越来越长,我们不得不考虑铲雪问题了。整个城市所有的道路都是双向车道,道路的两个方向均需要铲雪。因为城市预算的削减,整个城市只有1辆铲雪车。
铲雪车只能把它开过的地方(车道)的雪铲干净,无论哪儿有雪,铲雪车都得从停放的地方出发,游历整个城市的街道。现在的问题是:最少要花多少时间去铲掉所有道路上的雪呢?
输入格式:
输入数据的第1行表示铲雪车的停放坐标(x,y),x,y为整数,单位为米。下面最多有4000行,每行给出了一条街道的起点坐标和终点坐标,坐标均为整数,所有街道都是笔直的,且都是双向车道。铲雪车可以在任意交叉口、或任何街道的末尾任意转向,包括转U型弯。铲雪车铲雪时前进速度为20千米/时,不铲雪时前进速度为50千米/时。保证:铲雪车从起点一定可以到达任何街道。
输出格式:
输出铲掉所有街道上的雪并且返回出发点的最短时间,精确到分钟,四舍五入到整数。输出格式为”hours:minutes”,minutes不足两位数时需要补前导零。
【输入样例】
0 0
0 0 10000 10000
5000 -10000 5000 10000
5000 10000 10000 10000
【输出样例】
3:55
思路:由题目分析可得,每一个点的入度都等于出度,每个点的度数都是偶数,最终一定会有一个欧拉回路可以遍历完所有的街道。最后答案就是所有边的长度之和乘2除上20
代码:
#include <iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef pair<int ,int>PII;
int main()
{
int x1,y1,x2,y2;;
scanf("%d%d",&x1,&y1);
double sum=0;
while(scanf("%d%d%d%d",&x1,&y1,&x2,&y2)!=EOF)
{
int dx=x1-x2;
int dy=y1-y2;
sum+=sqrt(dx*dx+dy*dy)*2;
}
int m=round(sum/1000/20*60);
int h=m/60;
m%=60;
printf("%d:%02d\n",h,m);
return 0;
}