利用AI大模型和Mermaid生成流程图

核心点1:利用大模型生成流程图的语句(Code)

  1. 确定业务流程

    • 用户需要明确要绘制的业务流程,包括主要步骤、决策点以及各步骤之间的关系。
    • 将确定的业务流程以文字形式描述出来。
  2. 生成Mermaid代码

    • 将描述好的业务流程交给大模型(如ChatGPT),让其生成相应的Mermaid代码。
    • 大模型会根据输入的业务流程描述,自动生成符合Mermaid语法的代码。

例如,假设我们要绘制一个用户登录的业务流程图,内容包括用户登录、检查用户权限、显示内容或权限错误以及用户注销等步骤。描述业务流程如下:

  • 用户登录
  • 检查用户权限
  • 如果权限有效,显示内容;否则显示权限错误
  • 用户可以选择注销

将上述业务流程描述交给ChatGPT,生成如下Mermaid代码:

PlainText

graph TB
A[用户登录]-->B[检查用户权限]
B--权限有效-->C[显示内容]
B--权限无效-->D[显示权限错误]
C-->E[用户操作]

核心点2:利用Mermaid的开源API将Code转换成流程图片

  1. 渲染流程图

  2. 下载或引用图片

    • 将生成的流程图按照自己需要的格式下载下来,或者直接引用当前图片的链接,将其嵌入到文档中。

Mermaid API的详细使用

Mermaid提供了丰富的API方法,使得在网页中创建和展示各种类型的图表变得非常方便。以下是一些关键步骤:

  • 初始化图表: 使用mermaid.initialize方法可以初始化一个流程图,该方法接受一个可选的配置对象作为参数,用于自定义图表的样式和行为。

  • 添加节点和消息: 使用mermaidAPI.add方法可以向流程图中添加节点或消息。节点定义字符串可以使用-->表示节点之间的连接关系。

  • 渲染图表: 使用mermaidAPI.render方法可以将流程图渲染到指定的元素中。渲染后,图表将自动根据元素的大小进行布局和缩放,以适应不同的屏幕尺寸。

示例代码与流程

以下是一个完整的示例流程,展示了如何使用大模型和Mermaid API生成业务流程图:

  1. 确定业务流程并描述: 例如,用户登录、检查权限、显示内容或权限错误、用户注销等步骤。

  2. 使用大模型生成Mermaid代码: 将业务流程描述交给ChatGPT或其他大模型,生成Mermaid代码。

  3. 在Mermaid环境中渲染: 将生成的Mermaid代码粘贴到支持Mermaid的在线网站(如Online FlowChart & Diagrams Editor - Mermaid Live Editor)中进行渲染。

  4. 下载或引用图片: 根据需要下载生成的流程图图片,或直接引用其链接嵌入到文档中。

注意事项

  • 确保大模型能够准确理解并生成符合Mermaid语法的代码。
  • 根据实际需求调整和优化生成的流程图。
  • 注意Mermaid API的版本兼容性,确保使用的API方法在当前版本中有效。

通过以上步骤,你可以高效地利用大模型和Mermaid实现业务流程图的快速生成,并将其应用于各种文档和项目中。

代码:

# Mermaid Live Editor API
    api_url = "https://mermaid.ink/img/"
    full_url = f"{api_url}{base64_str}"

    # 下载图片
    response = requests.get(full_url)
    if response.status_code == 200:
        # 确保目录存在
        os.makedirs(upload_dir, exist_ok=True)

        # 保存图片
        with open(output_path, 'wb') as f:
            f.write(response.content)
        print(f"图片已保存到: {output_path}")
        print(f"访问链接: {full_url}")
        return output_path
    else:
        print(f"错误: {response.status_code}")
        print(f"URL: {full_url}")
        return None

### 关于人工智能大模型架构设计图 #### 变革中的Transformer模型 在现代的人工智能领域,Transformer模型已经成为构建大型预训练模型的核心组件之一[^1]。这类模型摒弃了传统的循环神经网络(RNN),转而采用自注意力机制(self-attention mechanism)来捕捉输入序列中不同位置之间的关系。 ```mermaid graph TB; A[Input Sequence] --> B[Multilayer Self-Attention]; B --> C[Feed Forward Neural Network]; C --> D[Layer Normalization]; D --> E[Output Sequence]; ``` 此图表展示了基本的Transformer结构,其中多层自我注意模块负责处理长距离依赖问题,前馈神经网络用于特征转换,最后通过层规范化确保数值稳定性并加速收敛过程。 #### 商汤的日日新SenseNova体系 商汤科技推出的“日日新 SenseNova”大模型体系不仅限于单一类型的算法实现,而是涵盖了多种功能服务的产品线,包括但不限于自然语言理解、图像生成等方面的能力扩展[^2]。“商 量 SenseChat”,作为该系列的一部分,专注于对话系统的优化;其他像“如 影SenseAvatar”的子系统则更侧重于视觉内容创造。 ```mermaid graph LR; subgraph "日日新 SenseNova" A["商 量 SenseChat"]-.->|NLP服务|B[Natural Language Processing]; C["如 影SenseAvatar"]-.->|Image Generation|D[Content Creation]; E["琼宇 SenseSpace"]-.->F[Scene Generation]; G["格物SenseThings"]-.->H[Object Modeling]; I["秒画 SenseMirage"]-.->J[Artistic Rendering]; end ``` 上述Mermaid流程图描绘了一个简化版的商汤大模型生态系统内部交互情况,各个组成部分相互协作完成复杂的任务需求。 #### 华为云全栈AI解决方案 华为云提供的全栈式AI方案强调硬件(昇腾/Ascend与鲲鹏)、软件(MindSpore)以及服务平台(ModelArts)三者间的深度融合,旨在打造一个高效能计算环境支持大规模机器学习工作负载运行的同时降低开发门槛提高生产力效率[^3]。 ```mermaid graph TD; H[Hardware Layer] --> K[AISCEND/KUNPENG Chipsets]; S[Software Framework] --> L[MindSpore Programming Environment]; P[Platform Services] --> M[ModelArts Development Platform]; classDef hardware fill:#f96,stroke:#333,color:white; classDef software fill:#6bf,strokE:#333,color:black; classDef platformServices fill:#ffeb3b,stroke:#333,color:black; class H,S,P hardware,software,platformServices; ``` 这张图概括说明了华为云如何利用其独特的资源组合优势建立起完整的AI开发生态圈,促进从研究到实际部署整个链条上的技术创新与发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值