python——地震数据统计A

地震数据统计A

类型:文件

描述

附件文件中包含若干条近年的地震相关信息,请实现以下功能完成数据统计,输入输出参考示例:‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬

  1. 输入‘震源深度’,则可以继续输入一个正整数 n‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬
    先按震源深度升序排序,并从低到高输出排名前n个地区及震源深度数据‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬
    再按震源深度降序排序,并从高到低输出排名前n个地区及震源深度数据‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬

  2. 输入‘震级’,则可以继续输入正整数 n‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬
    按震级降序排序,并输出震级排名最高的前n名。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬

  3. 输入其他字符串时,如果文件中的地区数据中含有该字符串,则按照文件中顺序输出这些地区和震级,格式参考示例‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬

  4. 如果未找到该字符串,则输出‘无数据’

示例 1

输入:

震源深度 
3  

输出:

从低到高前3名:
吉林延边州珲春市(疑爆):0千米
江苏连云港市灌南县(疑爆):0千米
辽宁抚顺市新抚区(矿震):0千米

从高到低前3名:
斐济群岛地区:640千米
斐济群岛地区:620千米
斐济群岛地区:610千米

示例 2

输入:

震级
3

输出:

斐济群岛地区:8.1级
秘鲁北部:7.8级
斐济群岛地区:7.8级

示例 3

输入:

印度洋

输出:

东南印度洋海岭:5.7
东南印度洋:6.2
中印度洋海岭:5.9
西南印度洋海岭:5.3
西南印度洋海岭:5.9‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

参考代码

def type_judge(input_str):
    """接收一个字符串为参数,根据参数调用不同的函数进行运算。
    """
    if input_str == '震源深度':
        depth_of_focus(data)
    elif input_str == '震级':
        magnitude(data)
    else:
        others(data)


def read_file(filename):
    """读文件,返回二维列表"""
    with open(filename, 'r', encoding='UTF-8') as f:
        data_lst = [i.strip().split(',') for i in f]
    return data_lst[1:]


def depth_of_focus(data_lst):
    n = int(input())
    data_sort_asc = sorted(data_lst, key=lambda x: eval(x[-2]))
    print('从低到高前{}名:'.format(n))
    for i in data_sort_asc[:n]:
        print('{}:{}千米'.format(i[-1], i[-2]))
    print()

    print('从高到低前{}名:'.format(n))
    data_sort_desc = sorted(data_lst, key=lambda x: eval(x[-2]),reverse=True)
    for i in data_sort_desc[:n]:
        print('{}:{}千米'.format(i[-1], i[-2]))


def magnitude(data_lst):
    n = int(input())
    data_sort = sorted(data_lst, key=lambda x: eval(x[1]), reverse=True)
    for i in data_sort[:n]:
        print('{}:{}级'.format(i[-1], i[1]))


def others(data_lst):
    """不是上述情况,在地名中查找输入的字符串,如果存在,则输出该地区数据"""
    flag = 0  # 如果不存在,则输出无数据
    for line in data_lst:
        if question in line[-1]:
            print('{}:{}'.format(line[-1], line[1]))
            flag = 1
    if flag == 0:
        print('无数据')


if __name__ == '__main__':
    file = 'quake.csv'
    data = read_file(file)
    question = input()
    type_judge(question)

本人代码:

with open('quake.csv', 'r', encoding='utf-8') as f:
    data = [one.strip().split(',') for one in f.readlines()[1:]]

n = input()
if n == '震源深度':
    num = int(input())
    data.sort(key=lambda x: eval(x[-2]), reverse=False)
    print('从低到高前{}名:'.format(num))
    for i in range(num):
        print('{}:{}千米'.format(data[i][-1], data[i][-2]))
    data.sort(key=lambda x: eval(x[-2]), reverse=True)
    print()
    print('从高到低前{}名:'.format(num))
    for i in range(num):
        print('{}:{}千米'.format(data[i][-1], data[i][-2]))
elif n == '震级':
    num = int(input())
    data.sort(key=lambda x: x[1], reverse=True)
    for i in range(num):
        print('{}:{}级'.format(data[i][-1], data[i][1]))
else:
    flag = 0
    for one in data:
        if n in one[-1]:
            print('{}:{}'.format(one[-1], one[1]))
            flag = 1
    if flag == 0:
        print('无数据')
### 使用Python进行地震波噪声处理或分析 #### 据准备与预处理 为了有效地处理和分析地震波噪声,首先需要收集并准备好高质量的地震数据。这通常涉及使用网络爬虫或其他方法来获取地震事件的时间、地点、震级等基本信息[^3]。 ```python import requests from bs4 import BeautifulSoup def fetch_earthquake_data(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # 假设网页结构已知,这里仅作示意 data = [] for row in soup.find_all('tr'): columns = row.find_all('td') event_info = { "time": columns[0].text, "location": columns[1].text, "magnitude": float(columns[2].text), } data.append(event_info) return data ``` #### 利用ObsPy读取SAC文件 对于特定格式如SAC(Seismic Analysis Code)的据,则可以借助`obspy.io.sac.SACTrace`模块来进行加载和初步解析[^4]。 ```python from obspy.core import read as obsread st = obsread("example.sac") # 加载单个 SAC 文件 print(st.traces) # 查看其中包含的所有追踪记录 ``` #### 实施交叉相关计算与频谱特征提取 接下来,在获得干净且整理好的时间序列之后,就可以应用诸如互相关函之类的统计手段来量化不同站点间信号之间的相似度;同时也可以采用傅里叶变换等方式转换至频率域以便更直观地观察周期性成分的存在情况[^1]。 ```python import numpy as np from scipy.signal import correlate, welch # 计算两个台站间的互相关系 ccf = correlate(trace_a.data, trace_b.data, mode='full') # 获取功率谱密度估计值 freqs, psd = welch(trace_c.data, fs=trace_c.stats.sampling_rate) ``` #### 执行频散曲线拟合及反演操作 最后一步便是构建合理的物理模型,并以此为基础尝试求解地下介质属性分布等问题——即所谓的“层析成像”。此过程中可能会涉及到较为复杂的学运算和技术细节,不过得益于现有开源项目的贡献,现在已经有了一些成熟的解决方案可供借鉴。 ```python from pysismo.models import LayeredModelInversion inverter = LayeredModelInversion() result = inverter.fit(freq_dispersion_curve=freqs_vs_velocity) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_62488776

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值