业务分析面试试卷三

目录

Q1:一个网站销售额变低,你从哪几个方面去考量?

A:

1. 流量变化分析​(先确认是否是“源头缺水”)

​2. 转化漏斗诊断​(从访问到支付的每个环节)

​3. 商品与价格策略

​4. 用户行为与留存

​5. 技术与外部因素

​6. 竞争对标与用户调研

​数据验证优先级示例

Q2:现在有一个游戏测试的环节,游戏测试结束后需要根据数据提交一份PPT,这个PPT你会如何安排?包括什么内容?

A:

封面页​(1页)

​目录页​(1页)

​Part 1:测试目标与数据范围​(2页)

​Part 2:核心指标健康度分析​(3-4页)

​Part 3:用户行为深度洞察​(3-4页)

​Part 4:关键问题优先级矩阵​(1页)

​Part 5:优化建议与ROI预测​(2-3页)

​Part 6:下一步计划与资源需求​(1页)

​尾页​(1页)

 

Q3:如果你对楼市不熟悉,现在要你去做一个像58同城之类的,卖房的中介,电商,你会如何进行分析。

A:

第一步:市场与竞品分析

​第二步:用户需求分层与痛点挖掘

​第三步:数据指标体系搭建

​第四步:供需匹配分析与优化

​第五步:关键环节体验优化

​第六步:验证假设与迭代

​总结:差异化破局点建议

Q4:某业务部门在上周结束了为期一周的大促,作为业务对口分析师,需要你对活动进行一次评估,你会从哪几方面进行分析?

A:

​1. 目标达成度分析​(明确基础水位)

​2. 用户分层与行为洞察​(谁在买?怎么买?)

​3. 流量结构与渠道ROI​(钱花得值吗?)

​4. 商品与库存策略​(卖什么?怎么卖?)

​5. 促销玩法有效性​(哪种策略刺激消费?)

​6. 竞争与外部因素​(是否跑赢大盘?)

​7. 后续影响与长尾价值​(透支未来还是持续增长?)

​8. 问题总结与行动建议​(从数据到决策)


Q1:一个网站销售额变低,你从哪几个方面去考量?

A:

通常来说,销售额下降可能涉及多个方面,比如流量、转化率、用户行为、产品问题、竞争环境等。

1. 流量变化分析​(先确认是否是“源头缺水”)

  • 流量规模:对比历史同期/环比的总UV、PV是否下降(使用Google Analytics/SQL查询趋势)。
  • 渠道质量:分渠道(自然搜索、付费广告、社交媒体、直接访问)分析:
    • 各渠道流量占比变化(如SEO流量骤降可能因算法调整)。
    • 付费渠道ROI(如CPC上涨但转化率未提升)。
  • 新老用户比例:若新用户占比下降,可能拉新策略失效;老用户流失则需排查复购率(用Cohort分析)。

2. 转化漏斗诊断​(从访问到支付的每个环节)

  • 关键节点流失率:构建漏斗(访问→加购→下单→支付),定位断崖式流失环节:
    • 例如加购率正常但支付率低,可能是结算页体验问题(运费上涨?支付方式故障?)。
  • 页面行为数据
    • 高跳出率页面:检查落地页内容与广告承诺是否一致。
    • 热图分析(如工具Hotjar):用户是否在关键按钮(如“立即购买”)区域停留不足?

3. 商品与价格策略

  • 核心SKU表现:Top 10畅销品销售额是否集体下滑(需排除库存不足或下架影响)。
  • 价格敏感度
    • 对比竞品价格(爬虫抓取或手动采样),检查是否失去竞争力。
    • 促销活动效果:历史折扣率与销售额的关系(如过度促销导致用户等待折扣)。
  • 品类结构变化:低客单价商品占比上升可能导致整体GMV下降(需计算客单价与订单量关系)。

4. 用户行为与留存

  • 用户分群分析
    • 高价值用户(RFM模型中的“重要保持客户”)活跃度是否下降。
    • 新用户首单转化周期是否延长(可能注册流程复杂化)。
  • 负面反馈
    • 客服工单分析(NLP主题聚类):高频问题如“物流慢”、“商品描述不符”。
    • 评论情感分析(爬取站内外评价,使用BERT模型判断情感倾向)。

5. 技术与外部因素

  • 技术故障
    • 支付接口错误日志分析(如支付宝/微信支付API调用失败率激增)。
    • 网站性能监控(如页面加载时间>3秒可能导致跳出率上升)。
  • 外部环境
    • 宏观经济(如消费指数下滑)、行业趋势(竞对融资后大额补贴)。
    • 政策影响(如进口关税调整影响跨境商品销量)。

6. 竞争对标与用户调研

  • 竞品动作
    • 监控竞品近期活动(如限时闪购、新功能上线)。
    • 使用SimilarWeb对比流量结构变化。
  • 用户调研
    • 流失用户问卷(退出页弹窗调查离开原因)。
    • 焦点小组访谈:深度挖掘未暴露的痛点(如“不再信任平台质量”)。

数据验证优先级示例

  1. 快速排查技术问题​(如支付失败率突增→立即技术修复)。
  2. 定位核心漏斗流失环节​(如加购到支付流失率升20%→A/B测试优化按钮文案)。
  3. 长期策略调整​(如竞品低价导致用户流失→重新评估定价模型)。

Q2:现在有一个游戏测试的环节,游戏测试结束后需要根据数据提交一份PPT,这个PPT你会如何安排?包括什么内容?

A:

封面页​(1页)

  • 标题:简洁点明核心结论
    示例:《XX游戏测试总结:新手引导流失率过高,付费转化潜力待释放》
  • 副标题:测试基本信息
    示例:测试周期:2024.3.1-3.7 | 测试版本:V2.3 | 样本量:5,000名玩家
  • 视觉:游戏主视觉图+关键数据标签(如“平均停留时长45min”)

目录页​(1页)

模块化导航

  1. 测试目标与数据范围
  2. 核心指标健康度分析
  3. 用户行为深度洞察
  4. 关键问题优先级排序
  5. 优化建议与ROI预测
  6. 下一步计划

Part 1:测试目标与数据范围​(2页)

  • 测试背景
    • 测试目的(如验证新手引导优化效果/付费模块AB测试)
    • 测试组与对照组划分逻辑(如新老版本用户分层)
  • 数据来源与可信度
    • 埋点覆盖率(关键事件是否完整采集)
    • 样本筛选规则(如排除机器人账号)
  • 核心KPI清单:提前对齐指标定义(如“付费转化率=首充用户/活跃用户”)

Part 2:核心指标健康度分析​(3-4页)

模块化仪表盘展示,每页聚焦1个核心领域:

  1. 留存分析

    • 次日/7日/30日留存率对比历史版本
    • 分群对比(如付费用户 vs 免费用户留存差异)
    • 图表:留存曲线对比图 + Cohort分析表格
  2. 参与度分析

    • 日均游戏时长、关卡完成率
    • 关键行为频率(如“每日挑战任务完成次数”)
    • 图表:箱线图(分布分析) + 趋势折线图
  3. 商业化分析

    • 付费率、ARPPU、付费深度(如重复付费用户占比)
    • 付费点转化漏斗(如“广告点击→礼包浏览→支付成功”)
    • 图表:漏斗图 + 付费用户LTV预测模型

Part 3:用户行为深度洞察​(3-4页)

用数据讲“用户故事”​

  1. 流失用户画像

    • 流失前共性行为(如80%流失用户卡在第三关卡)
    • 流失时间分布(是否集中在前30分钟?)
    • 图表:桑基图(用户旅程路径) + 热力图(关卡失败点)
  2. 高价值用户行为模式

    • 付费用户触发行为(如完成教学后立即浏览商城)
    • 社交行为与付费相关性(如加入公会的用户ARPPU提升2倍)
  3. 负面反馈聚类

    • 客服工单/BUG反馈TOP3问题(如“战斗卡顿率15%”)
    • 玩家评论情感分析(NLP提取关键词:“加载慢”、“奖励少”)

Part 4:关键问题优先级矩阵​(1页)

四象限法则:按【影响程度】vs【解决成本】排序

  • P0(紧急高价值)​
    示例:新手引导第3步流失率40%(影响留存,代码修复成本低)
  • P1(长期优化)​
    示例:付费页面跳出率高,但需UI重构(成本高)
  • 图表:矩阵气泡图(气泡大小=用户投诉量)

Part 5:优化建议与ROI预测​(2-3页)

每建议对应数据支撑

  • 方案1:简化新手引导流程
    • 数据依据:50%用户在第3步跳过引导
    • 预期ROI:留存率+15% → LTV提升$0.5/用户
  • 方案2:优化战斗系统卡顿
    • 数据依据:卡顿导致30%战斗中途退出
    • 预期ROI:日活时长+8分钟,广告曝光量+20%
  • 图表:方案对比表格(成本/收益/优先级)

Part 6:下一步计划与资源需求​(1页)

  • 行动计划:甘特图形式(如4月上线A/B测试)
  • 资源需求:开发人力、第三方工具预算
  • 待验证假设:需进一步测试的内容(如“社交分享奖励是否有效?”)

尾页​(1页)

  • 核心结论复述:3条子弹点总结(如“新手引导优化为最高优先级”)
  • QA答疑入口:附关键数据明细表链接(Excel/BI平台)
  • 联系方式:如需深度讨论可随时联系

设计原则

  1. 数据到洞察的转化:每页标题使用结论性描述,而非“留存分析”这类中性标题。
  2. 降低认知成本:多用对比(vs 行业基准 / vs 旧版本)、归因分析(如“渠道A流量下降因KOL合作到期”)。
  3. 可视化规范
    • 同一报告保持配色一致(如红色=问题,绿色=正向)
    • 避免过度装饰,图表注释用脚号而非悬浮文本框

Q3:如果你对楼市不熟悉,现在要你去做一个像58同城之类的,卖房的中介,电商,你会如何进行分析。

A:

第一步:市场与竞品分析

目标:明确行业格局、竞品策略、潜在机会点

  1. 行业基础数据

    • 市场规模(如二手房年交易额、新房/租房占比)
    • 政策影响(如限购、贷款利率变化对需求端的抑制/刺激)
    • 产业链角色(开发商、中介、金融服务等利益链)
      工具:艾瑞咨询/易观报告、统计局数据、爬取链家/贝壳的公开交易数据。
  2. 竞品拆解

    • 功能对比
      平台核心优势短板
      链家线下门店密度高,真房源佣金率高(2.7%)
      安居客流量大,覆盖长尾中介房源真实性低
      贝壳ACN合作网络,跨品牌房源中小中介入驻成本高
    • 盈利模式:佣金抽成(如二手房交易)、广告费(新房开发商)、金融服务(贷款服务费)。
  3. 机会洞察

    • 未被满足的需求(如三四线城市缺乏标准化服务)
    • 竞品弱点(如虚假房源投诉率高,可主打“100%真实房源+赔付保障”)

第二步:用户需求分层与痛点挖掘

目标:细分用户角色,针对性设计产品功能

  1. 用户分群

    • 买家:首套房刚需、改善型、投资客
    • 卖家:个人业主、开发商、中介机构
    • 租房者:短租客、长租客、企业客户
  2. 痛点调研​(示例):

    • 买家:虚假房源多、比价效率低、交易流程复杂
    • 卖家:挂盘渠道分散、佣金成本高、带看转化率低
      方法:爬取黑猫投诉/知乎相关讨论,用TF-IDF提取高频关键词。
  3. 需求优先级

    • 基础需求:房源真实性、价格透明度
    • 增值需求:VR看房、在线签约、搬家/装修一站式服务

第三步:数据指标体系搭建

目标:量化业务健康度,定位问题环节

  1. 供给端指标

    • 房源覆盖率(各区域/价格段房源数量占比)
    • 房源质量(平均挂牌时长、带看转化率、虚假房源投诉率)
  2. 需求端指标

    • 用户活跃度(DAU/MAU、人均搜索次数)
    • 转化漏斗:搜索→收藏→联系中介→线下带看→成交
    • 客单价(新房/二手房/租房平均交易金额)
  3. 平台效率指标

    • 匹配效率(搜索关键词与房源标签匹配度)
    • 中介人效(人均成交单数、平均服务时长)

第四步:供需匹配分析与优化

目标:解决“房-客-中介”匹配错位问题

  1. 标签体系构建

    • 房源标签:户型、楼层、学区、地铁距离、历史成交价
    • 用户标签:预算、购房目的(自住/投资)、家庭结构
      工具:OCR提取房产证信息、NLP解析用户咨询记录。
  2. 推荐算法优化

    • 基于协同过滤:相似预算用户关注的房源推荐
    • 基于实时行为:用户点击“学区房”后优先展示教育配套房源
  3. 定价合理性检测

    • 对比同小区历史成交价与挂牌价差异(若溢价>20%则预警)
    • 爬取竞品价格,生成“房价热度指数”指导卖家定价

第五步:关键环节体验优化

目标:降低交易摩擦,提升转化率

  1. 看房体验

    • 痛点:线下带看耗时、异地看房难
    • 方案:
      • VR看房:3D建模还原房源细节,减少无效带看
      • 直播带看:中介实时讲解,支持多人在线提问
  2. 交易信任建设

    • 痛点:资金安全担忧、合同条款不透明
    • 方案:
      • 资金监管账户(买家款暂存第三方,过户后释放)
      • 智能合同审核:高亮显示“户口迁出时间”“税费承担方”等关键条款
  3. 佣金模式创新

    • 痛点:传统中介费高(2%~3%)
    • 方案:
      • 固定费率(如1.5%)+ 按服务拆解收费(如签约成功付50%,过户付50%)

第六步:验证假设与迭代

目标:小步快跑,数据驱动决策

  1. AB测试

    • 测试1:房源列表页【显示历史成交价】vs【隐藏价格】→ 对比收藏率
    • 测试2:佣金分层策略(高费率+赔付保障 vs 低费率无保障)→ 对比成交率
  2. MVP(最小可行产品)​

    • 聚焦单一城市/单一品类(如上海二手房),验证供需匹配模型
    • 初期人工审核房源(保证真实性),后期自动化替代
  3. 冷启动策略

    • 供给端:签约优质中介(承诺前3月0佣金),快速积累房源
    • 需求端:新人补贴(如带看返现200元)、KOL导流(房产博主合作)

总结:差异化破局点建议

  1. 真房源+赔付保障:用“技术+人工”双重审核,解决行业最大痛点。
  2. 交易全流程线上化:从信息平台升级为交易平台,抽佣而非收广告费。
  3. 数据赋能中介:为中介提供用户行为分析报告(如“买家关注学区,推荐强调学校优势”)。

案例参考:贝壳通过ACN合作网络(房源共享分佣)打破中介壁垒,其“楼盘字典”数据库(1.2亿套房源信息)成为核心竞争力。新平台可借鉴其数据能力,但需在细分市场(如商业地产、海外房产)或服务模式(如订阅制会员)上创新。

Q4:某业务部门在上周结束了为期一周的大促,作为业务对口分析师,需要你对活动进行一次评估,你会从哪几方面进行分析?

A:

针对大促活动的效果评估,需结合业务目标、用户行为、运营策略进行多维度交叉分析。以下是系统性分析框架,涵盖8大核心模块及落地方法:


1. 目标达成度分析​(明确基础水位)

  • 核心指标对比
    • 实际GMV vs 目标GMV(拆解到日/小时粒度,识别峰值与低谷时段)
    • 订单量、客单价(对比日常均值,判断是“量驱动”还是“价驱动”)
    • 用户参与度:DAU/WAU、新用户占比、沉默用户唤醒率
  • 品类/区域拆解
    • Top 10品类贡献度(是否出现“头部集中化”?)
    • 重点城市GMV达标率(如一线城市未达预期,需排查物流/补贴策略)
  • 长尾指标
    • 退货率(异常升高可能因价格波动或商品质量问题)
    • 客服工单量(如支付失败类工单激增需技术复盘)

2. 用户分层与行为洞察​(谁在买?怎么买?)

  • 用户分群​(RFM模型 + 大促行为标签):
    • 高价值用户:历史付费用户本次复购率、ARPU变化
    • 新用户:首单转化周期、来源渠道质量(是否被低价吸引但无留存?)
    • 流失用户:被促销唤醒但未转化人群,分析流失节点
  • 行为路径分析
    • 漏斗转化率:首页曝光→活动页点击→加购→下单→支付
    • 关键节点流失归因(如加购未支付用户中,80%因“运费突然上涨”退出)
  • 敏感度测试
    • 价格敏感型用户:对比促销前后的客单价变化
    • 囤货型用户:大件商品(如日用品)单次购买件数分布

3. 流量结构与渠道ROI​(钱花得值吗?)

  • 流量来源拆解
    • 自然流量 vs 付费流量占比(若付费流量>60%,可能存在过度依赖风险)
    • 渠道质量分级(按CVR/ROI矩阵划分):
      渠道流量占比CVRROI结论
      信息流广告35%1.2%0.8高曝光但低转化
      搜索广告20%3.5%2.1保持投入
  • 新老渠道对比
    • 新渠道(如小红书直播)的流量贡献与用户留存率
    • 传统渠道(如EDM)的CTR衰减趋势
  • 流量协同效应
    • 跨渠道归因分析(如用户先看短视频广告,再通过搜索下单)

4. 商品与库存策略​(卖什么?怎么卖?)

  • 商品维度
    • 爆款商品:Top 50 SKU的GMV贡献占比、库存售罄率(是否错失销售机会?)
    • 长尾商品:促销期间动销率 vs 日常,判断是否被流量稀释
  • 价格策略
    • 折扣力度与销量弹性分析(如“满300-50”实际提升客单价22%)
    • 价格保护敏感度:预售商品价保期内申请退款比例
  • 库存周转
    • 大促期间库存周转天数 vs 日常
    • 滞销品清仓效果(如“买一赠一”策略下滞销品销量提升300%)

5. 促销玩法有效性​(哪种策略刺激消费?)

  • 优惠券使用分析
    • 领取率 vs 核销率(如“满500-100”券领取80万张,核销率仅8%)
    • 优惠券叠加规则:是否因过度让利导致利润率下降?
  • 活动形式对比
    活动类型参与用户量GMV贡献用户人均参与次数结论
    秒杀50万12%1.2流量大但转化集中
    满减80万35%2.5核心驱动力
    抽奖120万5%3.8高互动低转化
  • 时间节奏设计
    • 分时段GMV曲线(如“前3日蓄水,后2日爆发”是否达成?)
    • 预热期效果:预售定金支付用户最终尾款转化率

6. 竞争与外部因素​(是否跑赢大盘?)

  • 市场份额变化
    • 行业报告数据对比(如大促期间平台市占率从18%→22%)
    • 竞对动作监控:竞品主打折扣、明星直播等截流行为
  • 外部环境影响
    • 物流时效(如疫情导致30%订单延迟发货,影响DSR评分)
    • 政策因素(如地方消费券发放与平台活动叠加效应)

7. 后续影响与长尾价值​(透支未来还是持续增长?)

  • 用户留存
    • 大促后7日/30日留存率 vs 日常(是否存在“促销依赖症”?)
    • 新用户复购率:大促新增用户次月复购行为
  • 长尾销售
    • 大促商品搜索词热度衰减曲线(如活动结束后搜索量下降60%)
    • 关联销售效应:购买大促商品的用户后续跨品类购买率
  • 成本回收
    • 营销费用摊销周期(如拉新成本需用户留存6个月才能回本)

8. 问题总结与行动建议​(从数据到决策)

  • 优先级矩阵
    • P0(立即修复):支付失败率超10%的技术问题
    • P1(季度优化):搜索广告ROI提升至2.5+
    • P2(长期规划):搭建用户生命周期价值模型
  • AB测试建议
    • 假设:缩短优惠券领取到使用的步骤可提升核销率20%
    • 方案:A组(原有3步流程) vs B组(一键领券+锁库存)
  • 资源再分配
    • 削减低效渠道预算(如信息流广告预算转投搜索广告)
    • 加强爆品供应链合作(签订独家预售协议)

可视化报告示例结构​(PPT核心页):

  1. 目标达成总览:仪表盘式呈现GMV、订单量、ROI
  2. 用户行为热力图:24小时用户活跃时段与转化关联
  3. 渠道四象限图:ROI vs 流量规模,定位优质渠道
  4. 商品气泡图:销售额、毛利率、库存周转三维度分析
  5. 行动路线图:甘特图展示后续3个月优化计划

落地案例:曾为某电商大促复盘,发现“高客单价用户更倾向使用分期支付”,推动与金融机构合作定制分期免息策略,次月分期支付GMV占比提升18%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值