目录
Q2:现在有一个游戏测试的环节,游戏测试结束后需要根据数据提交一份PPT,这个PPT你会如何安排?包括什么内容?
Q3:如果你对楼市不熟悉,现在要你去做一个像58同城之类的,卖房的中介,电商,你会如何进行分析。
Q4:某业务部门在上周结束了为期一周的大促,作为业务对口分析师,需要你对活动进行一次评估,你会从哪几方面进行分析?
Q1:一个网站销售额变低,你从哪几个方面去考量?
A:
通常来说,销售额下降可能涉及多个方面,比如流量、转化率、用户行为、产品问题、竞争环境等。
1. 流量变化分析(先确认是否是“源头缺水”)
- 流量规模:对比历史同期/环比的总UV、PV是否下降(使用Google Analytics/SQL查询趋势)。
- 渠道质量:分渠道(自然搜索、付费广告、社交媒体、直接访问)分析:
- 各渠道流量占比变化(如SEO流量骤降可能因算法调整)。
- 付费渠道ROI(如CPC上涨但转化率未提升)。
- 新老用户比例:若新用户占比下降,可能拉新策略失效;老用户流失则需排查复购率(用Cohort分析)。
2. 转化漏斗诊断(从访问到支付的每个环节)
- 关键节点流失率:构建漏斗(访问→加购→下单→支付),定位断崖式流失环节:
- 例如加购率正常但支付率低,可能是结算页体验问题(运费上涨?支付方式故障?)。
- 页面行为数据:
- 高跳出率页面:检查落地页内容与广告承诺是否一致。
- 热图分析(如工具Hotjar):用户是否在关键按钮(如“立即购买”)区域停留不足?
3. 商品与价格策略
- 核心SKU表现:Top 10畅销品销售额是否集体下滑(需排除库存不足或下架影响)。
- 价格敏感度:
- 对比竞品价格(爬虫抓取或手动采样),检查是否失去竞争力。
- 促销活动效果:历史折扣率与销售额的关系(如过度促销导致用户等待折扣)。
- 品类结构变化:低客单价商品占比上升可能导致整体GMV下降(需计算客单价与订单量关系)。
4. 用户行为与留存
- 用户分群分析:
- 高价值用户(RFM模型中的“重要保持客户”)活跃度是否下降。
- 新用户首单转化周期是否延长(可能注册流程复杂化)。
- 负面反馈:
- 客服工单分析(NLP主题聚类):高频问题如“物流慢”、“商品描述不符”。
- 评论情感分析(爬取站内外评价,使用BERT模型判断情感倾向)。
5. 技术与外部因素
- 技术故障:
- 支付接口错误日志分析(如支付宝/微信支付API调用失败率激增)。
- 网站性能监控(如页面加载时间>3秒可能导致跳出率上升)。
- 外部环境:
- 宏观经济(如消费指数下滑)、行业趋势(竞对融资后大额补贴)。
- 政策影响(如进口关税调整影响跨境商品销量)。
6. 竞争对标与用户调研
- 竞品动作:
- 监控竞品近期活动(如限时闪购、新功能上线)。
- 使用SimilarWeb对比流量结构变化。
- 用户调研:
- 流失用户问卷(退出页弹窗调查离开原因)。
- 焦点小组访谈:深度挖掘未暴露的痛点(如“不再信任平台质量”)。
数据验证优先级示例
- 快速排查技术问题(如支付失败率突增→立即技术修复)。
- 定位核心漏斗流失环节(如加购到支付流失率升20%→A/B测试优化按钮文案)。
- 长期策略调整(如竞品低价导致用户流失→重新评估定价模型)。
Q2:现在有一个游戏测试的环节,游戏测试结束后需要根据数据提交一份PPT,这个PPT你会如何安排?包括什么内容?
A:
封面页(1页)
- 标题:简洁点明核心结论
示例:《XX游戏测试总结:新手引导流失率过高,付费转化潜力待释放》 - 副标题:测试基本信息
示例:测试周期:2024.3.1-3.7 | 测试版本:V2.3 | 样本量:5,000名玩家 - 视觉:游戏主视觉图+关键数据标签(如“平均停留时长45min”)
目录页(1页)
模块化导航:
- 测试目标与数据范围
- 核心指标健康度分析
- 用户行为深度洞察
- 关键问题优先级排序
- 优化建议与ROI预测
- 下一步计划
Part 1:测试目标与数据范围(2页)
- 测试背景:
- 测试目的(如验证新手引导优化效果/付费模块AB测试)
- 测试组与对照组划分逻辑(如新老版本用户分层)
- 数据来源与可信度:
- 埋点覆盖率(关键事件是否完整采集)
- 样本筛选规则(如排除机器人账号)
- 核心KPI清单:提前对齐指标定义(如“付费转化率=首充用户/活跃用户”)
Part 2:核心指标健康度分析(3-4页)
模块化仪表盘展示,每页聚焦1个核心领域:
-
留存分析:
- 次日/7日/30日留存率对比历史版本
- 分群对比(如付费用户 vs 免费用户留存差异)
- 图表:留存曲线对比图 + Cohort分析表格
-
参与度分析:
- 日均游戏时长、关卡完成率
- 关键行为频率(如“每日挑战任务完成次数”)
- 图表:箱线图(分布分析) + 趋势折线图
-
商业化分析:
- 付费率、ARPPU、付费深度(如重复付费用户占比)
- 付费点转化漏斗(如“广告点击→礼包浏览→支付成功”)
- 图表:漏斗图 + 付费用户LTV预测模型
Part 3:用户行为深度洞察(3-4页)
用数据讲“用户故事”:
-
流失用户画像:
- 流失前共性行为(如80%流失用户卡在第三关卡)
- 流失时间分布(是否集中在前30分钟?)
- 图表:桑基图(用户旅程路径) + 热力图(关卡失败点)
-
高价值用户行为模式:
- 付费用户触发行为(如完成教学后立即浏览商城)
- 社交行为与付费相关性(如加入公会的用户ARPPU提升2倍)
-
负面反馈聚类:
- 客服工单/BUG反馈TOP3问题(如“战斗卡顿率15%”)
- 玩家评论情感分析(NLP提取关键词:“加载慢”、“奖励少”)
Part 4:关键问题优先级矩阵(1页)
四象限法则:按【影响程度】vs【解决成本】排序
- P0(紧急高价值):
示例:新手引导第3步流失率40%(影响留存,代码修复成本低) - P1(长期优化):
示例:付费页面跳出率高,但需UI重构(成本高) - 图表:矩阵气泡图(气泡大小=用户投诉量)
Part 5:优化建议与ROI预测(2-3页)
每建议对应数据支撑:
- 方案1:简化新手引导流程
- 数据依据:50%用户在第3步跳过引导
- 预期ROI:留存率+15% → LTV提升$0.5/用户
- 方案2:优化战斗系统卡顿
- 数据依据:卡顿导致30%战斗中途退出
- 预期ROI:日活时长+8分钟,广告曝光量+20%
- 图表:方案对比表格(成本/收益/优先级)
Part 6:下一步计划与资源需求(1页)
- 行动计划:甘特图形式(如4月上线A/B测试)
- 资源需求:开发人力、第三方工具预算
- 待验证假设:需进一步测试的内容(如“社交分享奖励是否有效?”)
尾页(1页)
- 核心结论复述:3条子弹点总结(如“新手引导优化为最高优先级”)
- QA答疑入口:附关键数据明细表链接(Excel/BI平台)
- 联系方式:如需深度讨论可随时联系
设计原则:
- 数据到洞察的转化:每页标题使用结论性描述,而非“留存分析”这类中性标题。
- 降低认知成本:多用对比(vs 行业基准 / vs 旧版本)、归因分析(如“渠道A流量下降因KOL合作到期”)。
- 可视化规范:
- 同一报告保持配色一致(如红色=问题,绿色=正向)
- 避免过度装饰,图表注释用脚号而非悬浮文本框
Q3:如果你对楼市不熟悉,现在要你去做一个像58同城之类的,卖房的中介,电商,你会如何进行分析。
A:
第一步:市场与竞品分析
目标:明确行业格局、竞品策略、潜在机会点
-
行业基础数据:
- 市场规模(如二手房年交易额、新房/租房占比)
- 政策影响(如限购、贷款利率变化对需求端的抑制/刺激)
- 产业链角色(开发商、中介、金融服务等利益链)
工具:艾瑞咨询/易观报告、统计局数据、爬取链家/贝壳的公开交易数据。
-
竞品拆解:
- 功能对比:
平台 核心优势 短板 链家 线下门店密度高,真房源 佣金率高(2.7%) 安居客 流量大,覆盖长尾中介 房源真实性低 贝壳 ACN合作网络,跨品牌房源 中小中介入驻成本高 - 盈利模式:佣金抽成(如二手房交易)、广告费(新房开发商)、金融服务(贷款服务费)。
- 功能对比:
-
机会洞察:
- 未被满足的需求(如三四线城市缺乏标准化服务)
- 竞品弱点(如虚假房源投诉率高,可主打“100%真实房源+赔付保障”)
第二步:用户需求分层与痛点挖掘
目标:细分用户角色,针对性设计产品功能
-
用户分群:
- 买家:首套房刚需、改善型、投资客
- 卖家:个人业主、开发商、中介机构
- 租房者:短租客、长租客、企业客户
-
痛点调研(示例):
- 买家:虚假房源多、比价效率低、交易流程复杂
- 卖家:挂盘渠道分散、佣金成本高、带看转化率低
方法:爬取黑猫投诉/知乎相关讨论,用TF-IDF提取高频关键词。
-
需求优先级:
- 基础需求:房源真实性、价格透明度
- 增值需求:VR看房、在线签约、搬家/装修一站式服务
第三步:数据指标体系搭建
目标:量化业务健康度,定位问题环节
-
供给端指标:
- 房源覆盖率(各区域/价格段房源数量占比)
- 房源质量(平均挂牌时长、带看转化率、虚假房源投诉率)
-
需求端指标:
- 用户活跃度(DAU/MAU、人均搜索次数)
- 转化漏斗:搜索→收藏→联系中介→线下带看→成交
- 客单价(新房/二手房/租房平均交易金额)
-
平台效率指标:
- 匹配效率(搜索关键词与房源标签匹配度)
- 中介人效(人均成交单数、平均服务时长)
第四步:供需匹配分析与优化
目标:解决“房-客-中介”匹配错位问题
-
标签体系构建:
- 房源标签:户型、楼层、学区、地铁距离、历史成交价
- 用户标签:预算、购房目的(自住/投资)、家庭结构
工具:OCR提取房产证信息、NLP解析用户咨询记录。
-
推荐算法优化:
- 基于协同过滤:相似预算用户关注的房源推荐
- 基于实时行为:用户点击“学区房”后优先展示教育配套房源
-
定价合理性检测:
- 对比同小区历史成交价与挂牌价差异(若溢价>20%则预警)
- 爬取竞品价格,生成“房价热度指数”指导卖家定价
第五步:关键环节体验优化
目标:降低交易摩擦,提升转化率
-
看房体验:
- 痛点:线下带看耗时、异地看房难
- 方案:
- VR看房:3D建模还原房源细节,减少无效带看
- 直播带看:中介实时讲解,支持多人在线提问
-
交易信任建设:
- 痛点:资金安全担忧、合同条款不透明
- 方案:
- 资金监管账户(买家款暂存第三方,过户后释放)
- 智能合同审核:高亮显示“户口迁出时间”“税费承担方”等关键条款
-
佣金模式创新:
- 痛点:传统中介费高(2%~3%)
- 方案:
- 固定费率(如1.5%)+ 按服务拆解收费(如签约成功付50%,过户付50%)
第六步:验证假设与迭代
目标:小步快跑,数据驱动决策
-
AB测试:
- 测试1:房源列表页【显示历史成交价】vs【隐藏价格】→ 对比收藏率
- 测试2:佣金分层策略(高费率+赔付保障 vs 低费率无保障)→ 对比成交率
-
MVP(最小可行产品):
- 聚焦单一城市/单一品类(如上海二手房),验证供需匹配模型
- 初期人工审核房源(保证真实性),后期自动化替代
-
冷启动策略:
- 供给端:签约优质中介(承诺前3月0佣金),快速积累房源
- 需求端:新人补贴(如带看返现200元)、KOL导流(房产博主合作)
总结:差异化破局点建议
- 真房源+赔付保障:用“技术+人工”双重审核,解决行业最大痛点。
- 交易全流程线上化:从信息平台升级为交易平台,抽佣而非收广告费。
- 数据赋能中介:为中介提供用户行为分析报告(如“买家关注学区,推荐强调学校优势”)。
案例参考:贝壳通过ACN合作网络(房源共享分佣)打破中介壁垒,其“楼盘字典”数据库(1.2亿套房源信息)成为核心竞争力。新平台可借鉴其数据能力,但需在细分市场(如商业地产、海外房产)或服务模式(如订阅制会员)上创新。
Q4:某业务部门在上周结束了为期一周的大促,作为业务对口分析师,需要你对活动进行一次评估,你会从哪几方面进行分析?
A:
针对大促活动的效果评估,需结合业务目标、用户行为、运营策略进行多维度交叉分析。以下是系统性分析框架,涵盖8大核心模块及落地方法:
1. 目标达成度分析(明确基础水位)
- 核心指标对比:
- 实际GMV vs 目标GMV(拆解到日/小时粒度,识别峰值与低谷时段)
- 订单量、客单价(对比日常均值,判断是“量驱动”还是“价驱动”)
- 用户参与度:DAU/WAU、新用户占比、沉默用户唤醒率
- 品类/区域拆解:
- Top 10品类贡献度(是否出现“头部集中化”?)
- 重点城市GMV达标率(如一线城市未达预期,需排查物流/补贴策略)
- 长尾指标:
- 退货率(异常升高可能因价格波动或商品质量问题)
- 客服工单量(如支付失败类工单激增需技术复盘)
2. 用户分层与行为洞察(谁在买?怎么买?)
- 用户分群(RFM模型 + 大促行为标签):
- 高价值用户:历史付费用户本次复购率、ARPU变化
- 新用户:首单转化周期、来源渠道质量(是否被低价吸引但无留存?)
- 流失用户:被促销唤醒但未转化人群,分析流失节点
- 行为路径分析:
- 漏斗转化率:首页曝光→活动页点击→加购→下单→支付
- 关键节点流失归因(如加购未支付用户中,80%因“运费突然上涨”退出)
- 敏感度测试:
- 价格敏感型用户:对比促销前后的客单价变化
- 囤货型用户:大件商品(如日用品)单次购买件数分布
3. 流量结构与渠道ROI(钱花得值吗?)
- 流量来源拆解:
- 自然流量 vs 付费流量占比(若付费流量>60%,可能存在过度依赖风险)
- 渠道质量分级(按CVR/ROI矩阵划分):
渠道 流量占比 CVR ROI 结论 信息流广告 35% 1.2% 0.8 高曝光但低转化 搜索广告 20% 3.5% 2.1 保持投入
- 新老渠道对比:
- 新渠道(如小红书直播)的流量贡献与用户留存率
- 传统渠道(如EDM)的CTR衰减趋势
- 流量协同效应:
- 跨渠道归因分析(如用户先看短视频广告,再通过搜索下单)
4. 商品与库存策略(卖什么?怎么卖?)
- 商品维度:
- 爆款商品:Top 50 SKU的GMV贡献占比、库存售罄率(是否错失销售机会?)
- 长尾商品:促销期间动销率 vs 日常,判断是否被流量稀释
- 价格策略:
- 折扣力度与销量弹性分析(如“满300-50”实际提升客单价22%)
- 价格保护敏感度:预售商品价保期内申请退款比例
- 库存周转:
- 大促期间库存周转天数 vs 日常
- 滞销品清仓效果(如“买一赠一”策略下滞销品销量提升300%)
5. 促销玩法有效性(哪种策略刺激消费?)
- 优惠券使用分析:
- 领取率 vs 核销率(如“满500-100”券领取80万张,核销率仅8%)
- 优惠券叠加规则:是否因过度让利导致利润率下降?
- 活动形式对比:
活动类型 参与用户量 GMV贡献 用户人均参与次数 结论 秒杀 50万 12% 1.2 流量大但转化集中 满减 80万 35% 2.5 核心驱动力 抽奖 120万 5% 3.8 高互动低转化 - 时间节奏设计:
- 分时段GMV曲线(如“前3日蓄水,后2日爆发”是否达成?)
- 预热期效果:预售定金支付用户最终尾款转化率
6. 竞争与外部因素(是否跑赢大盘?)
- 市场份额变化:
- 行业报告数据对比(如大促期间平台市占率从18%→22%)
- 竞对动作监控:竞品主打折扣、明星直播等截流行为
- 外部环境影响:
- 物流时效(如疫情导致30%订单延迟发货,影响DSR评分)
- 政策因素(如地方消费券发放与平台活动叠加效应)
7. 后续影响与长尾价值(透支未来还是持续增长?)
- 用户留存:
- 大促后7日/30日留存率 vs 日常(是否存在“促销依赖症”?)
- 新用户复购率:大促新增用户次月复购行为
- 长尾销售:
- 大促商品搜索词热度衰减曲线(如活动结束后搜索量下降60%)
- 关联销售效应:购买大促商品的用户后续跨品类购买率
- 成本回收:
- 营销费用摊销周期(如拉新成本需用户留存6个月才能回本)
8. 问题总结与行动建议(从数据到决策)
- 优先级矩阵:
- P0(立即修复):支付失败率超10%的技术问题
- P1(季度优化):搜索广告ROI提升至2.5+
- P2(长期规划):搭建用户生命周期价值模型
- AB测试建议:
- 假设:缩短优惠券领取到使用的步骤可提升核销率20%
- 方案:A组(原有3步流程) vs B组(一键领券+锁库存)
- 资源再分配:
- 削减低效渠道预算(如信息流广告预算转投搜索广告)
- 加强爆品供应链合作(签订独家预售协议)
可视化报告示例结构(PPT核心页):
- 目标达成总览:仪表盘式呈现GMV、订单量、ROI
- 用户行为热力图:24小时用户活跃时段与转化关联
- 渠道四象限图:ROI vs 流量规模,定位优质渠道
- 商品气泡图:销售额、毛利率、库存周转三维度分析
- 行动路线图:甘特图展示后续3个月优化计划
落地案例:曾为某电商大促复盘,发现“高客单价用户更倾向使用分期支付”,推动与金融机构合作定制分期免息策略,次月分期支付GMV占比提升18%。