自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 大幅降低能耗:画面变动检测方案

调研了使我们项目整体功耗降低的方案,我们目前针对手机原画转存现在截取每帧图片,然后输入到模型进行推理。这其中其实有很多时候做的是无用功,如果我们像摄像头一样只针对特定目标记录其画面变动,再判断是否需要输入进网络模型中,这样可以减少对无意义的画面做算法处理的时间。

2024-10-30 10:34:33 589

原创 yolov11目标检测模型实际操作

本实验旨在实现一个目标检测方案,YOLOv11是由Ultralytics公司开发的新一代目标检测算法,YOLO11m在COCO数据集上实现了更高的平均精度(mAP)得分,同时使用的参数比YOLOv8m少22%,使其在不牺牲性能的情况下计算更轻。本实验旨在实现一个目标检测方案,使用YOLOv11算法适配三种不同分辨率(超高:2146964、高:1788804、节能:1430642)的输入,并将其预处理为统一的640640分辨率,以识别图片中的数字区域。

2024-10-29 15:42:02 753

原创 模型剪枝实操

本实验通过模型剪枝技术,对一个图像分类模型进行压缩,以减少模型的参数数量和计算复杂度。实验采用了文档中提到的剪枝方法,通过移除模型中不重要的权重或神经元来实现模型的轻量化。实验结果表明,剪枝后的模型在保持较高预测性能的同时,显著降低了模型的内存占用、功耗和推理时间。

2024-10-29 15:35:32 257

原创 模型蒸馏实操(附实验结果)

本实验旨在通过模型蒸馏技术,将一个大型的图像分类模型的知识迁移到一个小型模型中,以实现模型的轻量化和高效化。实验采用了文档中提到的知识蒸馏方法,通过教师-学生模型架构,将一个预训练的复杂模型(教师模型)的知识传递给一个结构更简单的学生模型。实验结果表明,蒸馏后的模型在保持较高预测性能的同时,显著降低了模型的复杂性和计算资源需求。

2024-10-29 15:32:55 788

原创 Prompt-Tuning方法学习

即先在Pre-training阶段通过一个模型在大规模无监督语料上训练一个预训练语言模型(Pre-trained Language Model,PLM),然后在Fine-Tuning阶段基于训练好的语言模型在具体的下游任务上进行再次微调(Fine-Tuning),以获得适应下游任务的模型。而在P-Tuning中,将模板中的P映射为一个可训练的参数h(如上图所示),此时这部分的token则称为pseudo token(soft-Prompt)。离散模板通常不稳定,且无法参与模型的训练环节,容易陷入局部最优;

2024-10-24 14:06:19 826

原创 上下文LLM(kimi调研为例)

简单介绍Kimi是什么?能做什么?Kimi产品体验测评:支持20万字上下文的版本简单介绍长上下文LLM优势大容量文本处理(亮点):Kimi能够处理高达20万字的输入和输出,这对于需要处理大量文本数据的用户来说是一个显著优势。丰富的功能集成:Kimi具备联网搜索能力、文件处理、网页内容解析等功能,为用户提供全面的服务,也可以满足用户对最新信息的需求。产品交互涉及优秀:Kimi在产品的交互和应用上,都做得非常到位,尤其很多细节都体现出该产品考虑到了用户心理和操作习惯。不足。

2024-10-24 13:43:34 627

原创 pth转onnx转tflite并固定输入(附代码和实验结果)

最近工程上在做基于端侧AI的超分模型,模型量化要从torch转换成onnx,再转为tflite。为了分别测试,我们固定输入输出和batch批次模型超分的结果不是非常理想,原因还在排查中,可能是因为图片输入太小,也可能因为测试代码没有处理好输入输出。总体上量化为tflite_float32,是目前最快和最优的超分模型。

2024-10-18 16:26:58 1072

原创 AIGC技术的学习 系列二

从2022年11月30日OpenAI发布ChatGPT以来,人工智能的相关话题就一直占据新闻的头条,这个领域的相关技术更是日新月异,有人开玩笑说是“天天文艺复兴,日日工业革命”。虽然,这个说法略显夸张,但是还是说明这个话题目前的进展快速,而且收到了广泛的关注。ChatGPT的爆火让大家感受到了大模型的能力,各大公司都在投入资源和人力去开发大模型。“对于大模型,当然会全力以赴,坚决拥抱”,这是雷总4月14号发微博表达的小米对于大模型技术的态度,我们也成立了大模型组去开发自己的大模型。

2024-10-16 20:02:20 827

原创 AIGC技术的学习 系列一

在全球智能制造的大潮中,我们见证了技术的飞速发展与产业的深刻变革。然而,即便在这样的背景下,工业设计的道路上仍布满了堵点和痛点,它们如同顽石般阻碍着创新的脚步。随着人工智能生成内容(AIGC)技术的兴起与扩散,我们仿佛站在了一个新的起点。AIGC以其卓越的内容生成能力,正在逐步改变我们对创作过程的理解。它不仅能够辅助设计师快速产出多样化的设计方案,还能够在虚拟现实、增强现实等领域开辟新的应用场景,极大地丰富了设计的表达手法和交互体验。

2024-10-16 17:34:44 787

原创 推荐算法的学习

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考LR的主要限制在于需要大量手动特征工程来间接提高模型表达,此时出现了两个发展方向:以FM为代表的端到端的隐向量学习方式,通过embedding来学习二阶交叉特征以GBDT+LR为代表的两阶段模型,第一阶段利用树模型优势自动化提取高阶特征交叉,第二阶段交由LR进行最终的学习阿里提出的MLR,以多个LR模型来提高整体模型性能。

2024-10-15 19:51:30 1191

原创 基于端侧AI的超分辨率技术

随着人工智能的不断发展,机器学习这门技术也越来越重要,图像超分辨率(Super-Resolution, SR)同样也借助AI技术性能起飞。本文介绍一种在端侧部署的AI的超分辨率技术以上就是今天要讲的内容,本文简单介绍了基于端侧AI超分辨率技术,以及mobileSR超分模型的原理和使用。

2024-10-15 11:58:54 889

原创 车载网络是什么

车载网络结构车载网络是车内部通过不同的通信协议和网络拓扑来实现各种电子系统之间的互联和数据交换。

2024-09-26 10:17:36 485

原创 车载网络面试题库

车载网络面试题库,持续更新中整理用于自学请勿转载。

2024-09-25 17:21:59 757

原创 CV基础问题

CV算法面试基础题,持续更新ing~

2024-09-25 15:36:45 928

原创 梯度爆炸与消失

梯度消失和梯度爆炸都是深度学习中需要关注的问题,它们都与梯度的传播有关。梯度消失会导致网络训练缓慢,而梯度爆炸可能导致网络无法收敛。为了解决这些问题,可以采用合适的激活函数、权重初始化策略、梯度剪切、批量归一化等方法。此外,调整学习率和使用残差连接也是有效的策略。

2024-09-25 11:09:56 527

原创 sigmoid为什么会有梯度消失的问题

sigmoid为什么会有梯度消失的问题?Sigmoid函数是一种常见的激活函数,它的公式是:Sigmoid函数的输出值域在(0, 1)之间,它可以将任意输入值映射到0和1之间。Sigmoid函数的导数(或梯度)是:这个导数公式是由链式法则推导出来的。

2024-09-25 10:48:00 419

原创 游戏原画转存技术【原画转存可节省60-80%工时,同时准确率提高】

如果我们需要对手机截图做图像识别,目标检测等操作,往往会遇到不同型号,不同品牌的手机制作的数据集训练出的模型,对其他品牌泛化性和鲁棒性不高的情况,这究竟是为什么,怎么解决?在训练过程中,不同品牌、不同型号手机的图像数据,可能会导致模型泛化能力下降。我们可以通过手机原画转存技术提高泛化能力和鲁棒性。

2024-09-24 11:05:20 788

原创 图像分类模型量化实操

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。这次介绍了动态量化与静态量化,并实际演示了动态量化中GPU和CPU版。在推理时对权重和激活值进行量化。可以减少模型大小和计算需求。通常用于加速模型推理。在训练后对权重进行量化。需要使用校准数据集来确定量化参数。可以显著减少模型大小和提高推理速度。

2024-09-23 19:58:23 1158

原创 模型和算子量化

最近面试问到了很多关于项目中关于模型和算子量化的操作和原理,为了巩固一下深度学习基础,整理顺便自学。提示:以下是本篇文章正文内容,下面案例可供参考量化过程中,需要考虑模型的精度、速度和硬件兼容性。不同的量化策略和精度(如INT8、FP16、INT4等)可能会对模型的性能和兼容性产生不同的影响。因此,量化策略的选择应基于具体的应用需求和目标硬件的特性。

2024-09-20 18:04:54 927

原创 leetcode和真正大厂笔试的区别

在实际的在线笔试系统中,我们不能按自测示例在代码中赋固定的值,不需要创建 Solution 类的实例或调用方法。系统会自动实例化这个类并调用 方法,传入测试用例作为参数,并根据返回的结果来评估你的代码是否正确。另外,通过运行测试用例,我们可以验证我们的是否能够正确处理各种输入,包括正常值、边界值和错误输入。基本上评判编程题的标准是通过率的高低,如果所有测试用例都通过,我们可以更有信心地认为我们的代码是高分的。

2024-09-20 12:36:08 1175

原创 网络结构介绍:简单模型、AlexNet、VGGNet、ResNet,并附2025秋招笔试题网络结构

前言一、简单的神经网络模型基础知识简单的网络结构二、AlxeNet网络结构特征提取部分 (`self.feature_extraction`)分类器部分 (`self.classifier`)前向传播 (`forward` 方法)三、VGG16网络结构卷积块 (`block1` 到 `block5`)卷积块具体分析全连接层 (`block6`)前向传播 (`forward` 方法)四、ResNet-18网络结构BasicBlock 类ResNet 类_make_layer 方法forward 方法。

2024-09-19 12:05:33 944 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除