- 博客(21)
- 收藏
- 关注
原创 大幅降低能耗:画面变动检测方案
调研了使我们项目整体功耗降低的方案,我们目前针对手机原画转存现在截取每帧图片,然后输入到模型进行推理。这其中其实有很多时候做的是无用功,如果我们像摄像头一样只针对特定目标记录其画面变动,再判断是否需要输入进网络模型中,这样可以减少对无意义的画面做算法处理的时间。
2024-10-30 10:34:33 589
原创 yolov11目标检测模型实际操作
本实验旨在实现一个目标检测方案,YOLOv11是由Ultralytics公司开发的新一代目标检测算法,YOLO11m在COCO数据集上实现了更高的平均精度(mAP)得分,同时使用的参数比YOLOv8m少22%,使其在不牺牲性能的情况下计算更轻。本实验旨在实现一个目标检测方案,使用YOLOv11算法适配三种不同分辨率(超高:2146964、高:1788804、节能:1430642)的输入,并将其预处理为统一的640640分辨率,以识别图片中的数字区域。
2024-10-29 15:42:02 753
原创 模型剪枝实操
本实验通过模型剪枝技术,对一个图像分类模型进行压缩,以减少模型的参数数量和计算复杂度。实验采用了文档中提到的剪枝方法,通过移除模型中不重要的权重或神经元来实现模型的轻量化。实验结果表明,剪枝后的模型在保持较高预测性能的同时,显著降低了模型的内存占用、功耗和推理时间。
2024-10-29 15:35:32 257
原创 模型蒸馏实操(附实验结果)
本实验旨在通过模型蒸馏技术,将一个大型的图像分类模型的知识迁移到一个小型模型中,以实现模型的轻量化和高效化。实验采用了文档中提到的知识蒸馏方法,通过教师-学生模型架构,将一个预训练的复杂模型(教师模型)的知识传递给一个结构更简单的学生模型。实验结果表明,蒸馏后的模型在保持较高预测性能的同时,显著降低了模型的复杂性和计算资源需求。
2024-10-29 15:32:55 788
原创 Prompt-Tuning方法学习
即先在Pre-training阶段通过一个模型在大规模无监督语料上训练一个预训练语言模型(Pre-trained Language Model,PLM),然后在Fine-Tuning阶段基于训练好的语言模型在具体的下游任务上进行再次微调(Fine-Tuning),以获得适应下游任务的模型。而在P-Tuning中,将模板中的P映射为一个可训练的参数h(如上图所示),此时这部分的token则称为pseudo token(soft-Prompt)。离散模板通常不稳定,且无法参与模型的训练环节,容易陷入局部最优;
2024-10-24 14:06:19 826
原创 上下文LLM(kimi调研为例)
简单介绍Kimi是什么?能做什么?Kimi产品体验测评:支持20万字上下文的版本简单介绍长上下文LLM优势大容量文本处理(亮点):Kimi能够处理高达20万字的输入和输出,这对于需要处理大量文本数据的用户来说是一个显著优势。丰富的功能集成:Kimi具备联网搜索能力、文件处理、网页内容解析等功能,为用户提供全面的服务,也可以满足用户对最新信息的需求。产品交互涉及优秀:Kimi在产品的交互和应用上,都做得非常到位,尤其很多细节都体现出该产品考虑到了用户心理和操作习惯。不足。
2024-10-24 13:43:34 627
原创 pth转onnx转tflite并固定输入(附代码和实验结果)
最近工程上在做基于端侧AI的超分模型,模型量化要从torch转换成onnx,再转为tflite。为了分别测试,我们固定输入输出和batch批次模型超分的结果不是非常理想,原因还在排查中,可能是因为图片输入太小,也可能因为测试代码没有处理好输入输出。总体上量化为tflite_float32,是目前最快和最优的超分模型。
2024-10-18 16:26:58 1072
原创 AIGC技术的学习 系列二
从2022年11月30日OpenAI发布ChatGPT以来,人工智能的相关话题就一直占据新闻的头条,这个领域的相关技术更是日新月异,有人开玩笑说是“天天文艺复兴,日日工业革命”。虽然,这个说法略显夸张,但是还是说明这个话题目前的进展快速,而且收到了广泛的关注。ChatGPT的爆火让大家感受到了大模型的能力,各大公司都在投入资源和人力去开发大模型。“对于大模型,当然会全力以赴,坚决拥抱”,这是雷总4月14号发微博表达的小米对于大模型技术的态度,我们也成立了大模型组去开发自己的大模型。
2024-10-16 20:02:20 827
原创 AIGC技术的学习 系列一
在全球智能制造的大潮中,我们见证了技术的飞速发展与产业的深刻变革。然而,即便在这样的背景下,工业设计的道路上仍布满了堵点和痛点,它们如同顽石般阻碍着创新的脚步。随着人工智能生成内容(AIGC)技术的兴起与扩散,我们仿佛站在了一个新的起点。AIGC以其卓越的内容生成能力,正在逐步改变我们对创作过程的理解。它不仅能够辅助设计师快速产出多样化的设计方案,还能够在虚拟现实、增强现实等领域开辟新的应用场景,极大地丰富了设计的表达手法和交互体验。
2024-10-16 17:34:44 787
原创 推荐算法的学习
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考LR的主要限制在于需要大量手动特征工程来间接提高模型表达,此时出现了两个发展方向:以FM为代表的端到端的隐向量学习方式,通过embedding来学习二阶交叉特征以GBDT+LR为代表的两阶段模型,第一阶段利用树模型优势自动化提取高阶特征交叉,第二阶段交由LR进行最终的学习阿里提出的MLR,以多个LR模型来提高整体模型性能。
2024-10-15 19:51:30 1191
原创 基于端侧AI的超分辨率技术
随着人工智能的不断发展,机器学习这门技术也越来越重要,图像超分辨率(Super-Resolution, SR)同样也借助AI技术性能起飞。本文介绍一种在端侧部署的AI的超分辨率技术以上就是今天要讲的内容,本文简单介绍了基于端侧AI超分辨率技术,以及mobileSR超分模型的原理和使用。
2024-10-15 11:58:54 889
原创 梯度爆炸与消失
梯度消失和梯度爆炸都是深度学习中需要关注的问题,它们都与梯度的传播有关。梯度消失会导致网络训练缓慢,而梯度爆炸可能导致网络无法收敛。为了解决这些问题,可以采用合适的激活函数、权重初始化策略、梯度剪切、批量归一化等方法。此外,调整学习率和使用残差连接也是有效的策略。
2024-09-25 11:09:56 527
原创 sigmoid为什么会有梯度消失的问题
sigmoid为什么会有梯度消失的问题?Sigmoid函数是一种常见的激活函数,它的公式是:Sigmoid函数的输出值域在(0, 1)之间,它可以将任意输入值映射到0和1之间。Sigmoid函数的导数(或梯度)是:这个导数公式是由链式法则推导出来的。
2024-09-25 10:48:00 419
原创 游戏原画转存技术【原画转存可节省60-80%工时,同时准确率提高】
如果我们需要对手机截图做图像识别,目标检测等操作,往往会遇到不同型号,不同品牌的手机制作的数据集训练出的模型,对其他品牌泛化性和鲁棒性不高的情况,这究竟是为什么,怎么解决?在训练过程中,不同品牌、不同型号手机的图像数据,可能会导致模型泛化能力下降。我们可以通过手机原画转存技术提高泛化能力和鲁棒性。
2024-09-24 11:05:20 788
原创 图像分类模型量化实操
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。这次介绍了动态量化与静态量化,并实际演示了动态量化中GPU和CPU版。在推理时对权重和激活值进行量化。可以减少模型大小和计算需求。通常用于加速模型推理。在训练后对权重进行量化。需要使用校准数据集来确定量化参数。可以显著减少模型大小和提高推理速度。
2024-09-23 19:58:23 1158
原创 模型和算子量化
最近面试问到了很多关于项目中关于模型和算子量化的操作和原理,为了巩固一下深度学习基础,整理顺便自学。提示:以下是本篇文章正文内容,下面案例可供参考量化过程中,需要考虑模型的精度、速度和硬件兼容性。不同的量化策略和精度(如INT8、FP16、INT4等)可能会对模型的性能和兼容性产生不同的影响。因此,量化策略的选择应基于具体的应用需求和目标硬件的特性。
2024-09-20 18:04:54 927
原创 leetcode和真正大厂笔试的区别
在实际的在线笔试系统中,我们不能按自测示例在代码中赋固定的值,不需要创建 Solution 类的实例或调用方法。系统会自动实例化这个类并调用 方法,传入测试用例作为参数,并根据返回的结果来评估你的代码是否正确。另外,通过运行测试用例,我们可以验证我们的是否能够正确处理各种输入,包括正常值、边界值和错误输入。基本上评判编程题的标准是通过率的高低,如果所有测试用例都通过,我们可以更有信心地认为我们的代码是高分的。
2024-09-20 12:36:08 1175
原创 网络结构介绍:简单模型、AlexNet、VGGNet、ResNet,并附2025秋招笔试题网络结构
前言一、简单的神经网络模型基础知识简单的网络结构二、AlxeNet网络结构特征提取部分 (`self.feature_extraction`)分类器部分 (`self.classifier`)前向传播 (`forward` 方法)三、VGG16网络结构卷积块 (`block1` 到 `block5`)卷积块具体分析全连接层 (`block6`)前向传播 (`forward` 方法)四、ResNet-18网络结构BasicBlock 类ResNet 类_make_layer 方法forward 方法。
2024-09-19 12:05:33 944 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人