深入模型训练:细节、参数设置及LORA微调在train.py中的实践
概述:
在深度学习的世界中,模型训练是一个复杂而关键的过程。一个经过精心训练和调整的模型能够更准确地捕捉数据的内在规律,从而实现更好的性能。本篇博客将详细介绍模型训练的细节、参数设置的重要性以及如何在train.py
中使用LORA(Low-Rank Adaptation)进行微调。
一、模型训练细节
模型训练涉及多个方面,包括但不限于数据加载、前向传播、反向传播、优化器更新等。在每个阶段,都有一些值得关注的细节:
- 数据加载:确保数据按照正确的顺序和格式加载到模型中。对于大型数据集,可能需要使用数据加载器(DataLoader)进行批量加载。
- 前向传播:模型接收到输入数据后,会经过多个层进行前向传播,最终输出预测结果。在这一阶段,需要确保模型的结构和参数设置正确。
- 损失计算:将模型的预测结果与真实标签进行比较,计算损失值。损失函数的选择对于模型的性能至关重要。
- 反向传播<