法律文书生成大模型(四)

模型训练细节

深入模型训练:细节、参数设置及LORA微调在train.py中的实践

概述

在深度学习的世界中,模型训练是一个复杂而关键的过程。一个经过精心训练和调整的模型能够更准确地捕捉数据的内在规律,从而实现更好的性能。本篇博客将详细介绍模型训练的细节、参数设置的重要性以及如何在train.py中使用LORA(Low-Rank Adaptation)进行微调。

一、模型训练细节

模型训练涉及多个方面,包括但不限于数据加载、前向传播、反向传播、优化器更新等。在每个阶段,都有一些值得关注的细节:

  1. 数据加载:确保数据按照正确的顺序和格式加载到模型中。对于大型数据集,可能需要使用数据加载器(DataLoader)进行批量加载。
  2. 前向传播:模型接收到输入数据后,会经过多个层进行前向传播,最终输出预测结果。在这一阶段,需要确保模型的结构和参数设置正确。
  3. 损失计算:将模型的预测结果与真实标签进行比较,计算损失值。损失函数的选择对于模型的性能至关重要。
  4. 反向传播<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值