用Matplotlib可视化二元函数的梯度

此篇博客展示了如何使用Python的Matplotlib和NumPy库创建三维函数图,并通过网格化和3D绘图演示了如何表示负梯度向量。作者还介绍了如何添加文本注释和关键点的标记,帮助理解函数特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(-15, 15, 0.05)
y = np.arange(-15, 15, 0.05)
# 网格化坐标
x,y = np.meshgrid(x,y)
z = -x**2 + y**2

fig = plt.figure()
# 生成一个三维绘图空间
ax = fig.add_subplot(1,1,1, projection = "3d")
# 绘制曲面
ax.plot_surface(x, y, z, color = "cornflowerblue", alpha = 0.5)
# 绘制坐标点和代表负梯度向量的直线
ax.scatter([3], [-5], [16], color = "green", marker = "o")
ax.quiver(3,-5,16, 6,10,0, colors = "yellow", length = 0.5)
# 添加三维文本注释
ax.text(-15, -15, 200, r"$z = -\mathrm{x^{2}} + \mathrm{y^{2}}$")
ax.text(0, 0, 150, r"$Grad(x,y,z) = (\frac{\partial{f(x,y)}}{\partial{x}}, \
        \frac{\partical{f(x,y)}}{\partial{y}}, 0)$")
ax.text(3, -10, 35, "(3,-5,16)")
ax.text(6,0,16, "(6,10,0)")

plt.show()
丑是丑了点,大家将就着看吧

 

\frac{表达式1}{表达式2} = 分式

\partial{x} = ∂x

\mathrm{表达式^{n}} = 上标 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值