1. 背景介绍
1.1 传统机器学习的局限性
传统的机器学习方法,如监督学习、无监督学习和强化学习,通常需要大量的标注数据来训练模型。然而,在现实世界中,获取大量标注数据是非常困难和昂贵的。此外,这些方法在面对新任务时,往往需要重新训练模型,这会导致计算资源的浪费和时间成本的增加。
1.2 零样本学习的概念
零样本学习(Zero-Shot Learning, ZSL)是一种新兴的机器学习方法,它旨在解决传统机器学习方法在数据稀缺和泛化能力方面的局限性。零样本学习的核心思想是利用已有的知识来学习新任务,而无需为新任务收集标注数据。这种方法在计算机视觉、自然语言处理等领域取得了显著的成果。
1.3 大语言模型的崛起
近年来,随着深度学习技术的发展,大型预训练语言模型(如GPT-3、BERT等)在自然语言处理任务中取得了突破性的进展。这些模型通过在大规模文本数据上进行预训练,学习到了丰富的语言知识和世界知识,从而具备了强大的泛化能力。因此,大语言模型为零样本学习提供了新的可能性。
2. 核心概念与联系
2.1 零样本学习
零样本学习是一种在没有目标任务标注数据的情况下ÿ