Transformer大模型实战:最终损失函数
关键词:Transformer,大模型,损失函数,NLP,自然语言处理,机器学习,深度学习
1. 背景介绍
1.1 问题的由来
Transformer架构自2017年提出以来,已成为自然语言处理(NLP)领域的核心技术之一。其基于自注意力机制(Self-Attention Mechanism)的设计,在众多NLP任务中取得了优异的性能。然而,对于大模型来说,如何设计有效的最终损失函数(Final Loss Function),成为制约模型性能的关键因素。
1.2 研究现状
目前,针对大模型的最终损失函数研究主要集中在以下几个方面:
- 交叉熵损失(Cross-Entropy Loss):最常用的损失函数,适用于分类任务,但在NLP任务中存在梯度消失、梯度爆炸等问题。
- 序列交叉熵损失(Sequence Cross-Entropy Loss