Transformer大模型实战 最终损失函数

Transformer大模型实战:最终损失函数

关键词:Transformer,大模型,损失函数,NLP,自然语言处理,机器学习,深度学习

1. 背景介绍

1.1 问题的由来

Transformer架构自2017年提出以来,已成为自然语言处理(NLP)领域的核心技术之一。其基于自注意力机制(Self-Attention Mechanism)的设计,在众多NLP任务中取得了优异的性能。然而,对于大模型来说,如何设计有效的最终损失函数(Final Loss Function),成为制约模型性能的关键因素。

1.2 研究现状

目前,针对大模型的最终损失函数研究主要集中在以下几个方面:

  • 交叉熵损失(Cross-Entropy Loss):最常用的损失函数,适用于分类任务,但在NLP任务中存在梯度消失、梯度爆炸等问题。
  • 序列交叉熵损失(Sequence Cross-Entropy Loss࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智能应用

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值