深度学习模型部署框架之mnn


0 前言

本文是深度学习模型部署框架的第三篇,更多部署框架可以查看本专栏的其他文章。

1 简介

概念:mnn是一个轻量级的深度神经网络引擎,支持深度学习的推理与训练。适用于服务器、个人电脑、手机、嵌入式各类设备。
优势:轻量性,无任何依赖;兼容性好,支持常见的框架;工具齐全,与开发者交流方便。
坑点:实践的不多,目前没发现什么坑点。

2 模型准备

2.1 导出模型为mnn格式

  • 使用mnn之前要先进行编译,编译后会得到一堆的工具,其中就有模型转换工具MNNConvert,参考文档,示例如下:
# TensorFlow -> MNN
./MNNConvert -f TF --modelFile XXX.pb --MNNModel XXX.mnn --bizCode biz

# ONNX -> MNN
./MNNConvert -f ONNX --modelFile XXX.onnx --MNNModel XXX.mnn --bizCode biz

# PyTorch -> MNN,先转ONNX,再转MNN

2.2 导出时注意事项

  • 在使用MNNConvert时,可以自行定义很多参数,可以根据需求设置

2.3 mnn模型检查

  • 检验mnn的输出与原始模型的输出是否一致,或输出的误差是否可以容忍

3 模型优化

3.1 量化

  • 使用预编译好的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值