一、历史背景解读
18世纪英国数学家托马斯·贝叶斯(Thomas Bayes,1702~1761)提出过一种看似显而易见的观点:
“用客观的新信息更新我们最初关于某个事物的信念后,我们就会得到一个新的、改进了的信念。”
这个研究成果由于简单显得平淡无奇,直至他死后两年才于1763年由他的朋友理查德·普莱斯帮助发表。它的数学原理很容易理解,简单说就是,如果你看到一个人总是做一些好事,则会推断那个人多半会是一个好人。这就是说,当你不能准确知悉一个事物的本质时,你可以依靠与事物特定本质相关的事件出现的多少去判断其本质属性的概率。
用数学语言表达就是:支持某项属性的事件发生得愈多,则该属性成立的可能性就愈大。
与其他统计学方法不同,贝叶斯方法建立在主观判断的基础上,你可以先估计一个值,然后根据客观事实不断修正。
1774年,法国数学家皮埃尔-西蒙·拉普拉斯(Pierre-Simon Laplace,1749-1827)独立地再次发现了贝叶斯公式。拉普拉斯关心的问题是:当存在着大量数据,但数据又可能有各种各样的错误和遗漏的时候,我们如何才能从中找到真实的规律。拉普拉斯研究了男孩和女孩的生育比例。有人观察到,似乎男孩的出生数量比女孩更高。
拉普拉斯不断地搜集新增的出生记录,并用之推断原有的概率是否准确。每一个新的记录都减少了不确定性的范围。拉普拉斯给出了我们现在所用的贝叶斯公式的表达:
该公式表示在B事件发生的条件下A事件发生的条件概率,等于A事件发生条件下B事件发生的条件概率乘以A事件的概率,再除以B事件发生的概率。公式中,P(A)也叫做先验概率,P(A/B)叫做后验概率。严格地讲,贝叶斯公式至少应被称为“贝叶斯-拉普拉斯公式”。
二、贝叶斯公式推理
三、贝叶斯案例计算
已知某人的出行记录和气象记录,来预判这个人是否会出行。
天气 | 温度 | 湿度 | 风 | 是否出门 |
---|---|---|---|---|
雨天 | 热 | 高 | 有风 | 出门 |
晴天 | 凉 | 低 | 有风 | 出门 |
雨天 | 适中 | 低 | 无风 | 不出门 |
雨天 | 凉 | 高 | 有风 | 不出门 |
晴天 | 热 | 适中 | 无风 | 出门 |
晴天 | 热 | 高 | 有风 | 不出门 |
由上述表格可知,类别一共有两个:出门和不出门。特征一共有四个:天气、温度、湿度和风。
根据朴素贝叶斯模型:
对朴素贝叶斯进行优化:
将案例转换成分类任务的表达式:
我们来预测一下在雨天、热、湿度高、无风的情况下,这个人是否出门。
通过表达式可以得出:
根据表格可知:
P(出门)=0.5
P(不出门)=0.5
P(雨天|不出门)P(热|不出门)P(高|不出门)P(无风|不出门)=4/81
P(雨天|出门)P(热|出门)P(高|出门)P(无风|出门)=2/81
最终可得出:
P(出门|雨天/ 热/ 高/ 无风)=1/81
P(不出门|雨天/ 热/ 高/ 无风)=2/81
最大后验概率为:P(不出门|雨天/ 热/ 高/ 无风)
可以得出结论:在雨天、热、湿度高、无风的天气状况下,这个人不会出门。
四、代码实现,垃圾邮件分类器
import os
import re
import string
import math
DATA_DIR = 'enron'
target_names = ['ham', 'spam']
def get_data(DATA_DIR):
subfolders = ['enron%d' % i for i in range(1,7)]
data = []
target = []
for subfolder in subfolders:
# spam
spam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))
for spam_file in spam_files:
with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:
data.append(f.read())
target.append(1)
# ham
ham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))
for ham_file in ham_files:
with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:
data.append(f.read())
target.append(0)
return data, target
X, y = get_data(DATA_DIR)
class SpamDetector_1(object):
"""Implementation of Naive Bayes for binary classification"""
#清除空格
def clean(self, s):
translator = str.maketrans("", "", string.punctuation)
return s.translate(translator)
#分开每个单词
def tokenize(self, text):
text = self.clean(text).lower()
return re.split("\W+", text)
#计算某个单词出现的次数
def get_word_counts(self, words):
word_counts = {}
for word in words:
word_counts[word] = word_counts.get(word, 0.0) + 1.0
return word_counts
class SpamDetector_2(SpamDetector_1):
# X:data,Y:target标签(垃圾邮件或正常邮件)
def fit(self, X, Y):
self.num_messages = {}
self.log_class_priors = {}
self.word_counts = {}
# 建立一个集合存储所有出现的单词
self.vocab = set()
# 统计spam和ham邮件的个数
self.num_messages['spam'] = sum(1 for label in Y if label == 1)
self.num_messages['ham'] = sum(1 for label in Y if label == 0)
# 计算先验概率,即所有的邮件中,垃圾邮件和正常邮件所占的比例
self.log_class_priors['spam'] = math.log(
self.num_messages['spam'] / (self.num_messages['spam'] + self.num_messages['ham']))
self.log_class_priors['ham'] = math.log(
self.num_messages['ham'] / (self.num_messages['spam'] + self.num_messages['ham']))
self.word_counts['spam'] = {}
self.word_counts['ham'] = {}
for x, y in zip(X, Y):
c = 'spam' if y == 1 else 'ham'
# 构建一个字典存储单封邮件中的单词以及其个数
counts = self.get_word_counts(self.tokenize(x))
for word, count in counts.items():
if word not in self.vocab:
self.vocab.add(word)#确保self.vocab中含有所有邮件中的单词
# 下面语句是为了计算垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。
# c是0或1,垃圾邮件的标签
if word not in self.word_counts[c]:
self.word_counts[c][word] = 0.0
self.word_counts[c][word] += count
MNB = SpamDetector_2()
MNB.fit(X[100:], y[100:])
class SpamDetector(SpamDetector_2):
def predict(self, X):
result = []
flag_1 = 0
# 遍历所有的测试集
for x in X:
counts = self.get_word_counts(self.tokenize(x)) # 生成可以记录单词以及该单词出现的次数的字典
spam_score = 0
ham_score = 0
flag_2 = 0
for word, _ in counts.items():
if word not in self.vocab: continue
#下面计算P(内容|垃圾邮件)和P(内容|正常邮件),所有的单词都要进行拉普拉斯平滑
else:
# 该单词存在于正常邮件的训练集和垃圾邮件的训练集当中
if word in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
log_w_given_spam = math.log(
(self.word_counts['spam'][word] + 1) / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log(
(self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 该单词存在于垃圾邮件的训练集当中,但不存在于正常邮件的训练集当中
if word in self.word_counts['spam'].keys() and word not in self.word_counts['ham'].keys():
log_w_given_spam = math.log(
(self.word_counts['spam'][word] + 1) / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log( 1 / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 该单词存在于正常邮件的训练集当中,但不存在于垃圾邮件的训练集当中
if word not in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
log_w_given_spam = math.log( 1 / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log(
(self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 把计算到的P(内容|垃圾邮件)和P(内容|正常邮件)加起来
spam_score += log_w_given_spam
ham_score += log_w_given_ham
flag_2 += 1
# 最后,还要把先验加上去,即P(垃圾邮件)和P(正常邮件)
spam_score += self.log_class_priors['spam']
ham_score += self.log_class_priors['ham']
# 最后进行预测,如果spam_score > ham_score则标志为1,即垃圾邮件
if spam_score > ham_score:
result.append(1)
else:
result.append(0)
flag_1 += 1
return result
MNB = SpamDetector()
MNB.fit(X[100:], y[100:])
pred = MNB.predict(X[:100])
true = y[:100]
accuracy = 0
for i in range(100):
if pred[i] == true[i]:
accuracy += 1
print(accuracy)
结果: