机械臂仿真:使用matlab机器人工具箱与标准DH法,实现6自由度机械臂的仿真运动

本文介绍基于标准DH参数法与Matlab的Robotics Toolbox实现机器人数学建模及仿真运动。阐述标准DH建模法、正逆向运动学原理及Matlab代码实现,还介绍了使用Matlab完成轨迹规划的方法,最后以六自由度机械臂写名字为例进行实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 引言

在了解了如何描述末端执行器的位姿之后,接下来我们就可以实现对机械臂的数学建模。建模的工具有很多种,本文介绍一种基于标准DH参数法与Matlab的Robotics Toolbox - Peter Corke库来实现此过程,并尝试实现6自由度机器人的仿真运动。

强烈推荐b站教学视频MATLAB机器人工具箱10.4 机械臂仿真教学(未完结),并且强烈建议大家先提前了解机器人位姿相关知识。本文多数内容基于自己的理解与参考中的链接,不妥之处多多指正。


1 预备知识

不严格的说,机械臂大体上可以分成三种结构:连杆(link),关节(又叫轴,axis)与基座(base)。直觉上说,我们会把坐标系固定在关节上,而非连杆上;基座指的是机器人的底座,是不动的,它又被称为连杆0。

每个坐标系(除了基座上的)我们都可以视为一个“自由度”,这意味着这个连杆是可以运动的。一般来说一个连杆只有一个自由度,要么是旋转,要么是移动,也可能有两个自由度。对于不同的连杆,建模方法是有所差异,但大致相同。


1.1 标准DH建模法

1.1.1 基本概念

建模的主要目的之一是为了保存两个关节与他们之间连杆的信息(例如连杆长度、旋转角度等),有了这些描述,我们就可以从基座开始,一步步把机械臂重新画出来。
图1 标准DH建模法任意两关节之间的坐标系构建

标准DH法是一种常用的定义连杆坐标系的规则,由J Denavit,RS Hartenberg于1956年提出。其具体规则为图2所示:
图2 标准DH建模法步骤图

PS:实际建模过程中,坐标系 O i − 1 O_{i-1} Oi1与坐标系 O i O_i Oi’ 重合,这意味着轴 x i x_i xi与轴 z i − 1 z_{i-1} zi1总是垂直相交。这样,我们就能用更少的参数来表达这些关节和连杆(我所指的信息是指此处的 a 、 α 、 θ a、\alpha、\theta aαθ);并且实际建模的过程,我们大多数情况只关心z轴与x轴上旋转、位移的信息。

与其叫做标准DH建模法,笔者认为叫做提线木偶可能更好理解一些。它的核心就是,需要把坐标系建立在连杆远离基座方向的关节的那一端(例如图1中的坐标系 O i O_i Oi和连杆 i i i,以此**“牵引着”**这个连杆的旋转或者移动,就像使用提线木偶一样。更形象一点:使用左手抓住右手指尖,然后拉着指尖来控制右手臂的运动,你的手臂就是连杆,你的右手指尖的位置就是关节坐标系的位置,这就是标准DH建模法的“感觉”。

补充:改进DH建模法

还有一种方法叫做改进DH建模法,它的核心就和标准DH建模法相反,它把坐标系建在连杆的靠近基座的那一个关节上,它的感觉就比如:用右手的手腕,来主动控制右手掌的旋转。不过,现实建模过程区分它们最严谨的方法,还是它们获取数据的顺序。


1.1.2 DH参数表格

我们建模过程获得的信息是怎么样的?如果我们有 n n n个连杆,我们获得的信息的排布可能是一个 n × 4 n\times 4 n×4(如果把基座看做连杆,例如此处的连杆0)大小的表格,就比如图3:
图3 某5自由度机器人的标准DH表格,参考链接见下文 这四个参数分别是:

1.: θ \theta θ表明从上一个关节所对应的坐标系的z轴,该旋转多少角度(逆时针为正);

2.: d d d表明沿着上一个关节所对应的坐标系的z轴,该移动多少距离;

3.: a a a表明沿着上一个关节所对应的坐标系的x轴,该移动多少距离(这个时候就已经到达);

4.: α \alpha α表明沿着上一个关节所对应的坐标系的x轴,该旋转多少角度(它可能用来调整这个自由度的旋转方向);

这个DH参数表格中包含了所有我们需要的描述机器人的完整信息,本质上就是机器人的各个坐标系之间的“变换矩阵”。这个信息可以帮助我们从基座的坐标系一步步的从参考坐标系一直推导到末端执行器的坐标系上,从而获得末端执行器的位姿,这也是正向运动学的核心。相关的推导会放到后续的章节中(剧透:就是四个齐次变换矩阵的矩阵乘法,获得相邻两坐标系的变换矩阵)。关于机器人位姿的理解,可以参考这篇文章:机械臂位姿描述

1.1.3 使用matlab机器人工具箱通过标准DH参数表格建立机器人

本文使用机器人工具箱Robotics Toolbox - Peter Corke以及标准DH建模法来建立机器人。核心是先确定有多少个自由度,再确定机械臂的初始位姿,最后使用几个函数生成我们的机器人,获得一个对象。
对于每一个自由度,使用link函数来获取一个连杆对象,这个对象的属性如下:

Link 的类属性(读/写ÿ
### 改进Denavit-Hartenberg (DH) 参数Matlab实现 #### 背景介绍 传统的Denavit-Hartenberg (D-H) 参数方是一种用于描述机器人关节之间空间关系的经典技术[^3]。然而,在实际应用中,传统D-H参数可能存在一些局限性,例如难以处理复杂的几何结构或冗余自由度等问题。因此,改进D-H参数成为研究热点之一。 以下是基于MATLAB的一种可能的优化方案及其代码示例: --- #### 方概述 为了改进D-H参数,可以采用以下策略: 1. **引入修正项**:通过对标准D-H矩阵增加额外的平移或旋转分量来适应更复杂的情况。 2. **简化计算过程**:利用数值优化算调整D-H参数以减少误差。 3. **自动生成函数**:编写脚本自动解析输入数据并生成对应的变换矩阵。 下面展示了一个具体的MATLAB实现案例。 --- #### MATLAB 实现代码 ```matlab % 定义Puma560机器人的初始D-H参数 dhparams = [ 0, pi/2, 0, 0; 0.4318, 0, 0, 0; 0, -pi/2, 0.15005, 0; 0, pi/2, 0.4318, 0; 0, -pi/2, 0, 0; 0, 0, 0, 0]; % 添加修正项(假设需要对第3个关节进行微调) correction_factor = [0; 0; 0.01; 0]; % 增加一个小的Z方向偏移作为例子 dhparams(3,:) = dhparams(3,:) + correction_factor; % 构建齐次变换矩阵 function T = computeTransform(dh_row) a = dh_row(1); alpha = dh_row(2); d = dh_row(3); theta = dh_row(4); ca = cos(alpha); sa = sin(alpha); ct = cos(theta); st = sin(theta); R_z = [ct, -st, 0, 0; st, ct, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]; T_z = [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, d; 0, 0, 0, 1]; T_x = [ca, -sa, 0, a*ca; sa, ca, 0, a*sa; 0, 0, 1, 0; 0, 0, 0, 1]; T = T_z * R_z * T_x; end % 计算整个链路的正向运动学 T_total = eye(4); for i = 1:size(dhparams,1) T_i = computeTransform(dhparams(i,:)); T_total = T_total * T_i; end disp('最终的末端执行器位姿:'); disp(T_total); ``` 上述代码实现了以下几个功能: - 对原始D-H参数进行了简单的修正操作[^2]; - 自定义`computeTransform`函数完成单节段的齐次变换矩阵计算; - 循环累乘得到完整的末端执行器姿态矩阵[^1]。 --- #### 结果分析 运行此程序后可以获得经过修改后的机器人末端执行器的姿态矩阵 `T_total` 。如果希望进一步提高精度或者适配特定场景,则可以通过如下方式扩展: - 应用遗传算或其他全局寻优工具动态调节各关节角度; - 将实验测量值融入模型校准流程之中。 --- ###
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值