单源最短路径-Dijkstra算法
首先简单解释以下什么时候使用优化,什么时候使用朴素,我们使用n表示点数,m表示边数。
- 当图是一个稠密图的时候,也就是m与 n 2 {n^2} n2是一个数量级的时候,我们采用邻接矩阵的形式存储,使用朴素的Dijkstra算法就可以。
- 当是一个稀疏图或者边数很大的时候,可以选择在使用邻接表或者链式前向星来存储图,这时就可以采用堆优化来完成Dijkstra。
时间复杂度
朴素的Dijkstra算法的时间复杂度是O( n 2 {n^2} n2),n是顶点的个数,是因为每次都需要找到当前最小的;而采用堆优化正是优化的这一步,使用小根堆,那么找到最小就是O(1),在将新的节点插入到优先队列时的时间复杂度时logn(n是顶点的个数,小根堆的构建),一共有m条边,所以时间复杂度就是O(mlogn)。
朴素算法
/**
* 有向图的最短路路径
* 从s点出发,到达其他点的最短路径
* @param s
*/
public static void Dijkstra(int s){
int INF = 0x3f3f3f3f;
Scanner in = new Scanner(System.in);
int n = in.nextInt(); // 顶点数
int m = in.nextInt(); // 边数
int[][] g = new int[n + 1][n + 1];
boolean[] st = new boolean[n + 1];
int[] dist = new int[n + 1];
for(int i = 1;i <= n;i ++) Arrays.fill(g[i],INF);
while(m --> 0){
int a = in.nextInt();
int b = in.nextInt();
int c = in.nextInt();
g[a][b] = Math.min(g[a][b],c);// 这个因为可能存在重边,所以选择出最短的
}
Arrays.fill(dist,INF);
dist[s] = 0;
for(int i = 0;i < n;i ++){
int t = -1;
// 找到未加入结果集的最短的距离
for(int j = 1;j <= n;j ++){
if(!st[j] && (t == -1 || dist[j] < dist[t])){
t = j;
}
}
st[t] = true;
// 进行松弛操作
for(int j = 1;j <= n;j ++){
if(!st[j])dist[j] = Math.min(dist[j],dist[t] + g[t][j]);
}
}
System.out.println(Arrays.toString(dist));
}
堆优化
借助优先队列(小根堆),这样在寻找最小的dist的时间复杂度就降低到了O(1),但是每次松弛之后插入到优先队列的时间复杂度就会变成O(logn),所以整体的时间复杂度就是O(mlogn)。
package 图;
import java.util.*;
/**
* dijkstra的堆优化版本
* 稀疏图的时候或者边数很大的时候
*/
public class Short {
static final int N = (int) (1.5 * 1e5), INF = 0x3f3f3f3f;
static int[] h = new int[N], e = new int[N], ne = new int[N], w = new int[N], dist = new int[N];
static boolean[] st = new boolean[N];
static int n, m, idx;
public static void main(String[] args) {
Arrays.fill(dist, INF);
Arrays.fill(h, -1);
idx = 0;
Scanner in = new Scanner(System.in);
n = in.nextInt();
m = in.nextInt();
while(m --> 0){
int a = in.nextInt();
int b = in.nextInt();
int c = in.nextInt();
add(a, b, c);
}
dijkstra(1);
}
public static void add(int a, int b, int c){
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx ++;
}
public static void dijkstra(int u){
Queue<pos> q = new PriorityQueue<>((a,b) -> a.dist - b.dist);
dist[u] = 0;
q.offer(new pos(u, dist[u]));
while(!q.isEmpty()){
pos p = q.poll();
// 我们的优先队列是直接插入的,并不是把已经在优先队列中的进行更新。
// 所以我们使用st来标记当前点是否已经被用过,不加也不影响,因为我们是小根堆,也就是说有效的已经被使用了,其余的全是无效的,为了提高效率,我们就标记一下就行。
if(st[p.index]) continue;
st[p.index] = true;
for(int i = h[p.index]; i != -1; i = ne[i]){
int j = e[i];
if(p.dist + w[i] < dist[j]){
dist[j] = p.dist + w[i];
q.offer(new pos(j, dist[j]));
}
}
}
for (int i = 1; i <= n; i++) {
System.out.print(dist[i] + " ");
}
}
}
class pos{
int index;
int dist;
public pos(int index, int dist) {
this.index = index;
this.dist = dist;
}
}