结合代码看Vision Transformer【ViT】

本文介绍了Vision Transformer (ViT) 的结构,包括Transformer、Encoder、Block及其组件如LayerNorm、MultiHeadAttention和MLP。通过将图像分割成16x16的patch并进行embedding,结合class token和position embedding,ViT能够学习到全局的结构信息。多头注意力机制使得每个输出点与全图的其他点都有交互,形成全图的感受野。最后,文章提到了ViT在视觉任务上的优秀表现。
摘要由CSDN通过智能技术生成

参考仓库:

论文:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

有相关问题搜索知识星球号:1453755 【CV老司机】加入星球提问。扫码也可加入:

也可以搜索关注微信公众号: CV老司机

相关代码和详细资源或者相关问题,可联系牛先生小猪wx号: jishudashou

结构介绍:

ViT: Transformer + Head

Transformer: Embeddings [1x197x768] + Encoder

Encoder: N x { Block_Sequence + layerNorm [非全局均值方差,有的实现没做】}

Block: LayerNorm + MultiHeadAttension + LayerNorm + Mlp [中间有两次残差累加]

>>> 以输入224x224x3为例,embedding :196+1 个patch , 768 通道【embedding dimension】

Embeddin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值