深度学习笔记记录(全连接神经网络)

本文介绍了深度学习中的关键概念,包括全连接神经网络的结构与工作原理,激活函数(如ReLU和Sigmoid)的作用,以及反向传播在训练过程中的重要性。文章还讨论了分类和回归任务,并提到了CNN在处理特定数据类型的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于深度学习的理解

深度学习是机器学习的一个分支,它主要关注如何使用多层神经网络来学习数据的特征表示。与传统的机器学习算法相比,深度学习在处理大规模数据和复杂任务时具有更好的性能。
传统的机器学习算法通常需要手工提取特征,并且在处理复杂数据时可能会遇到性能瓶颈。而深度学习通过多层神经网络的堆叠,可以自动学习数据的高阶特征表示,从而在复杂任务上取得更好的表现。
在这里插入图片描述

全连接神经网络

全连接神经网络,也称为前馈神经网络(Feedforward Neural Network),是一种最基本的人工神经网络。

在全连接神经网络中,神经元(或节点)被组织成多个层,每一层的神经元与前一层和后一层的神经元全都相连,但同一层内的神经元之间没有连接。 数据在网络中是从输入层向输出层单向传播的,没有反馈(或循环)连接,这也是"前馈"这个名字的由来。

全连接神经网络的每一个连接都有一个权重,这些权重是通过训练数据来学习的。 每个神经元会计算其所有输入的加权和,然后通过一个激活函数,如 ReLU、sigmoid 或 tanh 等,来得到其输出。

这种网络结构可以适应多种任务,如分类、回归等。但对于处理序列或图像等数据时,全连接神经网络的效果可能不如其他特定的网络结构,比如说循环神经网络(用于处理序列数据)和卷积神经网络(用于处理图像数据)。

下面是理解神经网络的基础,看不懂可以直接从神经网络的总体层次那里看。

线性函数

首先以分类问题为例子。假如判断一张图片是否为猫的照片,线性函数会给出这张照片为猫、狗、狼的得分,所以也可以称为这个线性函数为得分函数。下面这张图片可以展示,其中W代表权重参数,输入x代表输入进去的图像。
在这里插入图片描述
同时,假设输入的图像为32323的矩阵,其中,3232是图像的高和宽,3是RGB三颜色通道。假设分类的类别为10种,并且共有32323=3072个像素点, 所以W是一个103072的矩阵,b是偏秩项。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值