-
mAP (mean Average Precision):
- mAP 是目标检测模型最常用的评估指标。它结合了模型的精确率(precision)和召回率(recall)来衡量模型的整体性能。
- 计算步骤:
- Precision(精确率):检测到的目标中,真正属于该类的比例。公式为:
Precision = TP / (TP + FP)
,其中 TP 是真正例(true positives),FP 是假正例(false positives)。 - Recall(召回率):真正属于该类的目标中,被正确检测到的比例。公式为:
Recall = TP / (TP + FN)
,其中 FN 是假负例(false negatives)。 - AP(Average Precision):对于每一类,通过绘制精确率-召回率曲线,并计算曲线下的面积来得到 AP。
- mAP(mean Average Precision):对所有类别的 AP 取平均值。
- Precision(精确率):检测到的目标中,真正属于该类的比例。公式为:
-
Precision(精确率):
- Precision 衡量模型预测的准确性,即模型的正预测结果中有多少是正确的。
- 公式:
Precision = TP / (TP + FP)
-
Recall(召回率):
- Recall 衡量模型的召回能力,即实际的正样本中有多少被正确识别出来。
- 公式:
Recall = TP / (TP + FN)
-
F1 Score:
- F1 Score 是精确率和召回率的调和平均数,用于平衡这两个指标。它在精确率和召回率之间取得一个平衡。
- 公式:
F1 Score = 2 * (Precision * Recall) / (Precision + Recall)
-
IoU (Intersection over Union):
- IoU 衡量预测的边界框和真实边界框之间的重叠程度。
- 公式:
IoU = (Area of Overlap) / (Area of Union)
- IoU 是计算 TP 和 FP 的基础。通常认为 IoU 大于某个阈值(如0.5)即为 TP,否则为 FP。
-
FPS (Frames Per Second):
FPS 衡量模型的推理速度,即每秒能够处理的帧数。对于实时应用(如视频流检测),这是一个重要指标。
衡量模型的几个指标
于 2024-05-16 16:23:14 首次发布