xgb获得特征重要性get_score()

XGBoost模型提供了get_score()和get_fscore()方法来评估特征的重要性。get_score()返回特征在划分数据时的使用次数,而get_fscore()则提供特征在决策树中作为分割点的频率,这些信息可用于分析特征对模型预测的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

model.get_score() 方法返回一个字典,其中包含模型中每个特征的得分。这些得分是通过计算特征在训练过程中用于划分数据的次数来计算的,因此可以用来衡量特征的重要性。model.get_score().keys() 是获取这个字典中的所有键(即特征名)。

在 XGBoost 中,每个特征都有一个"重要性得分",指的是该特征在决策树中被用作划分点的次数。model.get_fscore() 方法返回一个字典,其中包含每个特征的重要性得分。model.get_fscore().values() 是获取这个字典中的所有值(即每个特征的重要性得分),并将其用于构建一个列表

最后,将特征名和重要性得分组合成一个字典,其中键为特征名,值为该特征的重要性得分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值