P1102 A-B 数对(详解)

A-B 数对

题目背景

出题是一件痛苦的事情!

相同的题目看多了也会有审美疲劳,于是我舍弃了大家所熟悉的 A+B Problem,改用 A-B 了哈哈!

题目描述

给出一串正整数数列以及一个正整数 C C C,要求计算出所有满足 A − B = C A - B = C AB=C 的数对的个数(不同位置的数字一样的数对算不同的数对)。

输入格式

输入共两行。

第一行,两个正整数 N , C N,C N,C

第二行, N N N 个正整数,作为要求处理的那串数。

输出格式

一行,表示该串正整数中包含的满足 A − B = C A - B = C AB=C 的数对的个数。

样例 #1

样例输入 #1

4 1
1 1 2 3

样例输出 #1

3

提示

对于 75 % 75\% 75% 的数据, 1 ≤ N ≤ 2000 1 \leq N \leq 2000 1N2000

对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 2 × 1 0 5 1 \leq N \leq 2 \times 10^5 1N2×105 0 ≤ a i < 2 30 0 \leq a_i <2^{30} 0ai<230, 1 ≤ C < 2 30 1 \leq C < 2^{30} 1C<230

2017/4/29 新添数据两组

方法一:采用map映射

A-B = C转化为A-C = B;
遍历数组num,把数本身作为一个key,存入map中,再把num数组中的数都减去一个c。因此数组中的数就变成了B,再放入map中,查看对应的value,也就是个数。

代码如下:

#include <bits/stdc++.h>
using namespace std;
typedef long long  ll;
const int N = 200010;

ll n, c;
ll num[N];
map<ll, ll>m;
ll result;

int main() {
	scanf("%d%d", &n, &c);

	for (int i = 1; i <=n; i++) {
		scanf("%d", &num[i]);
		m[num[i]]++;
		num[i] -= c;
	}

	for (int i = 1; i <=n; i++) {
		result += m[num[i]];
	}

	cout << result;
	return 0;
}代码片

方法二:二分法STL

首先先说一下c++STL中lower_bound()与upper_bound()函数:
在解决问题的过程中,我们会需要进行以下步骤:

求出数组中第一个大于等于 x xx 或第一个大于 x xx 的数,如果这时数据很大并且我们去遍历的话,时间复杂度为 O ( n ) O(n)O(n),这时候我们可以考虑二分,也可以考虑 C++ 自带的 STL 中的 lower_bound 与 upper_bound 来做。

lower_bound

lower_bound求的是非递减序列中第一个大于等于 x (要查找的元素)的数。

一般形式:

lower_bound(数组名+第一个元素下标,数组名+数组长度,查找元素)-数组名

**

upper_bound

upper_bound求的是非递减序列中第一个大于 x(要查找的元素) 的数。

一般形式:

upper_bound(数组名+第一个元素下标,数组名+数组长度,查找元素)-数组名

这两个函数返回的是对应数的下标,若没找到,返回数组长度+1,即 n+1。

然后我们回到题目
由A-B=C 可得A = B+C
所以,我们首先把数组进行排序;
然后就开始遍历数组,找A的左右端点,两端点相减,就是满足条件的个数。

代码如下:

#include <bits/stdc++.h>
using namespace std;
const int N = 200010;
int INF = 0x3f3f3f3f;
typedef long long ll;

ll a[N];
ll n, c;
ll result = 0;

int main() {
	cin >> n >> c;

	for (int i = 1; i <= n; i++) {
		scanf("%d", &a[i]);
	}

	a[n + 1] = INF;
	sort(a + 1, a + n + 1);

	for (int i = 1; i <= n; i++) {
		result += (upper_bound(a + 1, a + n + 1, a[i] + c) - a) - (lower_bound(a + 1, a + n + 1, a[i] + c) - a);
	}

	cout << result << endl;
	return 0;
}

可能写的很抽象,但是题目很简单,照着代码走一遍就懂了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值