A-B 数对
题目背景
出题是一件痛苦的事情!
相同的题目看多了也会有审美疲劳,于是我舍弃了大家所熟悉的 A+B Problem,改用 A-B 了哈哈!
题目描述
给出一串正整数数列以及一个正整数 C C C,要求计算出所有满足 A − B = C A - B = C A−B=C 的数对的个数(不同位置的数字一样的数对算不同的数对)。
输入格式
输入共两行。
第一行,两个正整数 N , C N,C N,C。
第二行, N N N 个正整数,作为要求处理的那串数。
输出格式
一行,表示该串正整数中包含的满足 A − B = C A - B = C A−B=C 的数对的个数。
样例 #1
样例输入 #1
4 1
1 1 2 3
样例输出 #1
3
提示
对于 75 % 75\% 75% 的数据, 1 ≤ N ≤ 2000 1 \leq N \leq 2000 1≤N≤2000。
对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 2 × 1 0 5 1 \leq N \leq 2 \times 10^5 1≤N≤2×105, 0 ≤ a i < 2 30 0 \leq a_i <2^{30} 0≤ai<230, 1 ≤ C < 2 30 1 \leq C < 2^{30} 1≤C<230。
2017/4/29 新添数据两组
方法一:采用map映射
A-B = C转化为A-C = B;
遍历数组num,把数本身作为一个key,存入map中,再把num数组中的数都减去一个c。因此数组中的数就变成了B,再放入map中,查看对应的value,也就是个数。
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 200010;
ll n, c;
ll num[N];
map<ll, ll>m;
ll result;
int main() {
scanf("%d%d", &n, &c);
for (int i = 1; i <=n; i++) {
scanf("%d", &num[i]);
m[num[i]]++;
num[i] -= c;
}
for (int i = 1; i <=n; i++) {
result += m[num[i]];
}
cout << result;
return 0;
}代码片
方法二:二分法STL
首先先说一下c++STL中lower_bound()与upper_bound()函数:
在解决问题的过程中,我们会需要进行以下步骤:
求出数组中第一个大于等于 x xx 或第一个大于 x xx 的数,如果这时数据很大并且我们去遍历的话,时间复杂度为 O ( n ) O(n)O(n),这时候我们可以考虑二分,也可以考虑 C++ 自带的 STL 中的 lower_bound 与 upper_bound 来做。
lower_bound
lower_bound求的是非递减序列中第一个大于等于 x (要查找的元素)的数。
一般形式:
lower_bound(数组名+第一个元素下标,数组名+数组长度,查找元素)-数组名
**
upper_bound
upper_bound求的是非递减序列中第一个大于 x(要查找的元素) 的数。
一般形式:
upper_bound(数组名+第一个元素下标,数组名+数组长度,查找元素)-数组名
这两个函数返回的是对应数的下标,若没找到,返回数组长度+1,即 n+1。
然后我们回到题目
由A-B=C 可得A = B+C
所以,我们首先把数组进行排序;
然后就开始遍历数组,找A的左右端点,两端点相减,就是满足条件的个数。
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N = 200010;
int INF = 0x3f3f3f3f;
typedef long long ll;
ll a[N];
ll n, c;
ll result = 0;
int main() {
cin >> n >> c;
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
a[n + 1] = INF;
sort(a + 1, a + n + 1);
for (int i = 1; i <= n; i++) {
result += (upper_bound(a + 1, a + n + 1, a[i] + c) - a) - (lower_bound(a + 1, a + n + 1, a[i] + c) - a);
}
cout << result << endl;
return 0;
}
可能写的很抽象,但是题目很简单,照着代码走一遍就懂了。