模式识别——统计决策方法——正态分布时的统计决策

模式识别——统计决策方法——正态分布时的统计决策

正态分布性质回顾

单变量正态分布概率密度函数定义为

p ( x ) = 1 2 x σ e x p { − 1 2 ( x − μ σ ) 2 } p(x)=\frac{1}{\sqrt{2x}\sigma}exp\{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\} p(x)=2x σ1exp{21(σxμ)2}

多元正态分布的概率密度函数定义为

p ( x ) = 1 ( 2 π ) d 2 ∣ ∑ ∣ 1 2 e x p { − 1 2 ( x − μ ) T ∑ − 1 ( x − μ ) } 其中 μ = E { x } , ∑ = E { ( x − μ ) ( x − μ ) T } p(x)=\frac{1}{(2\pi)^{\frac{d}{2}}\vert{{\sum\rvert}}^{\frac{1}{2}}}exp\{-\frac{1}{2}(x-\mu)^{T}{\sum}^{-1}(x-\mu)\}\\ 其中 \mu=E\{x\}, \sum=E\{(x-\mu)(x-\mu)^T\} p(x)=(2π)2d211exp{21(xμ)T1(xμ)}其中μ=E{x},=E{(xμ)(xμ)T}

正态分布下的最小错误率贝叶斯决策

image-20231008164649074

根据前面最小错误率贝叶斯判别函数和决策面的有关公式,在正态分布下的概率 p ( x ∣ w 1 ) ∽ ( μ , ∑ ) p(x|w_1)\backsim(\mu, \sum) p(xw1)(μ,)我们可以得到新的判别函数(即正态分布下的后验概率):
g i ( x ) = − 1 2 ( x − μ ) T ∑ i − 1 ( x − μ ) − d 2 l n 2 π − 1 2 l n ∣ ∑ i ∣ + l n P ( w i ) g_i(x)=-\frac{1}{2}(x-\mu)^T{\sum_{i}}^{-1}(x-\mu)-\frac{d}{2}ln2\pi-\frac{1}{2}ln\vert{\sum}_{i}\rvert+lnP(w_i) gi(x)=21(xμ)Ti1(xμ)2dln2π21lni+lnP(wi)
决策面方程为 g i ( x ) = g j ( x ) g_i(x)=g_j(x) gi(x)=gj(x)


− 1 2 [ ( x − μ i ) T ∑ i − 1 ( x − μ i ) − ( x − μ j ) T ∑ j − 1 ( x − μ j ) ] − 1 2 l n ∣ ∑ i ∣ ∣ ∑ j ∣ + l n P ( w i ) P ( w i ) = 0 -\frac{1}{2}[(x-\mu_i)^T{\sum}_{i}^{-1}(x-\mu_i)-(x-\mu_j)^T{\sum}_{j}^{-1}(x-\mu_j)]-\frac{1}{2}ln\frac{\vert{\sum}_{i}\rvert}{\vert{\sum}_{j}\rvert}+ln\frac{P(w_i)}{P(w_i)}=0 21[(xμi)Ti1(xμi)(xμj)Tj1(xμj)]21lnji+lnP(wi)P(wi)=0

特殊情况1: ∑ i = σ 2 I , i = 1 , 2 , . . . , c {\sum}_{i}=\sigma^2I,i=1,2,...,c i=σ2I,i=1,2,...,c

每类的协方差矩阵都相等,类内各特征间相互独立,且具有相等的方差

此时有:
g i ( x ) = − 1 2 σ 2 ( x − μ i ) T ( x − μ i ) + l n P ( w i ) g_i(x)=-\frac{1}{2\sigma^2}(x-\mu_i)^T(x-\mu_i)+lnP(w_i) gi(x)=2σ21(xμi)T(xμi)+lnP(wi)
因为 x T x x^Tx xTx项与i无关,可以忽略,则判别函数为
g i ( x ) = − 1 2 σ 2 ( − 2 μ i T x + μ i T μ i ) + l n P ( w i ) = μ i T σ 2 x − 1 2 σ 2 μ i T μ i + l n P ( w i ) ) = w T x + w i 0 \begin{aligned} g_i(x)&=-\frac{1}{2\sigma^2}(-2\mu_i^Tx+\mu_i^T\mu_i)+lnP(w_i)\\ &=\frac{\mu_i^T}{\sigma^2}x-\frac{1}{2\sigma^2}\mu_i^T \mu_i+lnP(w_i))\\ &=w^Tx+w_{i0} \end{aligned} gi(x)=2σ21(2μiTx+μiTμi)+lnP(wi)=σ2μiTx2σ21μiTμi+lnP(wi))=wTx+wi0
其中 w = μ i σ 2 , w i 0 = − 1 2 σ 2 μ i T μ i + l n P ( w i ) ) w=\frac{\mu_i}{\sigma^2},w_{i0}=-\frac{1}{2\sigma^2}\mu_i^T \mu_i+lnP(w_i)) w=σ2μi,wi0=2σ21μiTμi+lnP(wi))

决策规则:
若 g i ( x ) = m a x i g i ( x ) ,则 x ∈ w i 若g_i(x)=max_ig_i(x),则x\in{w_i} gi(x)=maxigi(x),则xwi
由该式可以看出,判别函数 g i ( x ) g_i(x) gi(x)是x的线性函数,因此称为线性分类器

特殊情况2: ∑ i = ∑ , i = 1 , 2 , . . . , c {\sum}_{i}=\sum,i=1,2,...,c i=,i=1,2,...,c

与情况1类似,各类的协方差矩阵都相同,但是各特征间不一定相互独立。从几何上看,相当于各类样本集中于以该均值 μ i \mu_i μi为中心的同样大小和形状的超椭球内

其判别函数为
g i ( x ) = − 1 ∑ ( − 2 μ i T x + μ i T μ i ) + l n P ( w i ) = μ i T ∑ x − 1 2 ∑ μ i T μ i + l n P ( w i ) ) = w T x + w i 0 \begin{aligned} g_i(x)&=-\frac{1}{\sum}(-2\mu_i^Tx+\mu_i^T\mu_i)+lnP(w_i)\\ &=\frac{\mu_i^T}{\sum}x-\frac{1}{2\sum}\mu_i^T \mu_i+lnP(w_i))\\ &=w^Tx+w_{i0} \end{aligned} gi(x)=1(2μiTx+μiTμi)+lnP(wi)=μiTx21μiTμi+lnP(wi))=wTx+wi0
其中 w = μ i ∑ , w i 0 = − 1 2 ∑ μ i T μ i + l n P ( w i ) ) w=\frac{\mu_i}{\sum},w_{i0}=-\frac{1}{2\sum}\mu_i^T \mu_i+lnP(w_i)) w=μi,wi0=21μiTμi+lnP(wi))

特殊情况3:各类的协方差不相等

这是多元正态分布的一般情况,判别函数为:
g i ( x ) = − 1 2 ( x − μ ) T ∑ i − 1 ( x − μ ) − 1 2 l n ∣ ∑ i ∣ + l n P ( w i ) = x T W i x + w i x + w i 0 \begin{aligned} g_i(x)&=-\frac{1}{2}(x-\mu)^T{\sum_{i}}^{-1}(x-\mu)-\frac{1}{2}ln\vert{\sum}_{i}\rvert+lnP(w_i)\\ &=x^TW_ix+w_ix+w_{i0} \end{aligned} gi(x)=21(xμ)Ti1(xμ)21lni+lnP(wi)=xTWix+wix+wi0
其中
W i = − 1 2 ∑ − 1 w i = ∑ i − 1 μ i w i 0 = − 1 2 μ i T ∑ i − 1 μ i − 1 2 l n ∣ ∑ i ∣ + l n P ( w i ) W_i=-\frac{1}{2}\sum^{-1}\\ w_i=\sum_i^{-1}\mu_i\\w_{i0}=-\frac{1}{2}\mu_i^T\sum_i^{-1}\mu_i-\frac{1}{2}ln\vert{\sum}_{i}\rvert+lnP(w_i) Wi=211wi=i1μiwi0=21μiTi1μi21lni+lnP(wi)

此时判别函数表示为x的二次型,决策面为超二次曲面

image-20231008175317801

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值