微分方程的通解:微分方程的解中含有的独立常数的个数与微分方程的阶数相同,那么就成这个解是微分方程的通解。
那么什么是独立常数呢?下面给出解释:任何恒等变形都不能使常数的个数减少。
微分方程的特解:确定了通解中的常数后,通解就变为了特解。
下面举个例子说明:对于任何常数C,函数和
是方程
在R上的解。一般而言,
就是微分方程的通解,而像确定常数的
就是微分方程的特解。
二阶常系数齐次微分方程:
微分方程的通解:微分方程的解中含有的独立常数的个数与微分方程的阶数相同,那么就成这个解是微分方程的通解。
那么什么是独立常数呢?下面给出解释:任何恒等变形都不能使常数的个数减少。
微分方程的特解:确定了通解中的常数后,通解就变为了特解。
下面举个例子说明:对于任何常数C,函数和
是方程
在R上的解。一般而言,
就是微分方程的通解,而像确定常数的
就是微分方程的特解。
二阶常系数齐次微分方程: