二阶微分方程求解

微分方程的通解:微分方程的解中含有的独立常数的个数与微分方程的阶数相同,那么就成这个解是微分方程的通解。

那么什么是独立常数呢?下面给出解释:任何恒等变形都不能使常数的个数减少。

微分方程的特解:确定了通解中的常数后,通解就变为了特解。

下面举个例子说明:对于任何常数C,函数y=Ce^{x}y=e^{x}是方程y'-y=0在R上的解。一般而言,y=Ce^{x}就是微分方程的通解,而像确定常数的y=e^{x}就是微分方程的特解

二阶常系数齐次微分方程:y''+p(x)y'+q(x)y=0

解的结构y_{1}(x)y_{2}(x)是方程的两个解,且\frac{y_{1}(x)}{y_{2}(x)}\neq C(常数),那么

                                ​​​​​​​       Y(x)=C_{1}y_{1}+C_{2}y_{2}                                                     (1)

就是方程的通解。

二阶非齐次线性微分方程:{y}''+p(x){y}'+q(x)y=f(x)                                  (2)

通解:y\ast (x)是二阶非齐次线性微分方程的一个特解,(1)式为对应齐次方程的通解,那么        ​​​​​​​        ​​​​​​​        ​​​​​​​            ​​​​​​​        ​​​​​​​    y(x)=​​​​​​​Y(x)+y\ast (x)                                           (3)

是二阶非齐次线性微分方程的通解。

证明:先将(3)式代入(2)式左端,得到

({Y}''+{y\ast }'')+p(x)({Y}'+{y\ast }')+q(x)(Y+y\ast )=[{Y}''+p(x){Y}'+q(x)Y]+[{y\ast }''+p(x){y\ast }'+q(x)y\ast ],等式右端第一个括号也就是对应的线性齐次微分方程的解,即第一个括号恒等于0,又因为y\ast (x)是(2)式的一个特解,也就是第二个括号恒等于f(x),也就是说,y(x)=​​​​​​​Y(x)+y\ast (x)    使(2)两端恒等,即(3)是(2)的解,然后又由上面提到的微分方程的通解可知(2)中含有两个独立常数,且等于微分方程的阶数,故(3)就是(2)的通解,故得证。

(其实还有好多想写的,但是真的不想码字了,太浪费时间了,有机会一定再发)

  • 19
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值