主成分分析(PCA)

文章介绍了主成分分析(PCA)作为一种常用的数据降维技术,通过旋转坐标轴最大化方差来提取关键信息。PCA包括原理、步骤,如计算协方差矩阵和特征值,以及如何选择主成分数量。同时讨论了PCA的优点(如简单计算和正交性)和缺点(如解释性弱和可能丢失重要信息)。
摘要由CSDN通过智能技术生成

主成分分析(PCA)是一种比较基础的数据降维方法,也是多元统计中的重要部分,在数据分析、机器学习等方面具有广泛应用。主成分分析目的是用较少的变量来代替原来较多的变量,并可以反映原来多个变量的大部分信息。

一、PCA原理

对于一个含有n个数据,变量的个数为p的一个样本,我们可以用p维空间的n个点来表示这些数据。例如含有2个变量,3个数据(1,2),(2,2),(3,3)的样本,即可以表示为:在这里插入图片描述
如果含有3个变量,就是三维空间中的散点。
通常情况下,我们在实验初会提出很多变量,并且采集这些数据,这些数据中各个变量往往会存在一定的相关性。而这些相关性便意味着可以进行数据的降维,用更少的变量来替代这些变量。事实上,在很多情况下数据的降维是十分必要的,一方面有利于问题的简化,另一方面便于计算机的计算:数据降维后变量的减少,会使计算机处理的数据大大减少,从而缩短数据处理时间。

主成分分析的直观理解,可以认为是旋转坐标轴,使得在旋转坐标轴后这些点在新的坐标系下在各个坐标轴(变量)方向投影的方差变大。其中如果在某坐标上的方差最大,那么这个坐标轴对应的这些散点的坐标就是第一主成分,其次就是第二主成分,依此类推。
在这里插入图片描述
对于上图的8组数据,我们发现在x轴方向方差很大,在y轴方向方差为0,所以就可以用这些点的横坐标数据作为第一主成分,并且只选第一主成分便可以达到要求。

对于下图的情况,我们发现这些数据都几乎排列在一条直线上,并且在x轴方向和y轴方向的方差都比较大。但是如果把坐标轴旋转一定角度,使得这些数据在某个坐标轴的投影的方差比较大,便可以用新坐标系下方差较大的一个坐标轴坐标作为主成分。
在这里插入图片描述
对于左图,数据为(1,2)、(2,4)…旋转坐标轴后,坐标为( 5 {\sqrt{5} } 5 ,0)、( 2 5 {2\sqrt{5} } 25 ,0)…这样主成分就是新坐标系下变量x的数值: 5 {\sqrt{5} } 5 , 2 5 {2\sqrt{5} } 25 , 3 5 {3\sqrt{5} } 35 …。

对于大多数情况,数据各个变量基本服从正态分布,所以变量为2的数据散点分布大致为一个椭圆,变量为3的散点分布大致为一个椭球,p个变量的数据大致分布在一个超椭圆。而通过旋转坐标系,使得超椭圆的长轴落在一个坐标轴上,其次超椭圆另一个轴也尽量落在坐标轴上。这样各个新的坐标轴上的坐标值便是相应的主成分。

在这里插入图片描述

二、PCA步骤

对于含有p个变量、n个数据的样本 X n × p {X_{n\times p} } Xn×p,可以计算出其协差阵 ∑ p × p {\sum p\times p} p×p。根据该协差阵可以求出p个特征值并从大到小排序得 λ 1 , λ 2 λ 3 . . . λ p {\lambda_{1 } ,\lambda_{2 } \lambda_{3 } ...\lambda_{p } } λ1,λ2λ3...λp与相应的p个特征向量 T i , T 2 . . . T p {T_{i} ,T_{2} ...T_{p} } Ti,T2...Tp。则第i主成分为 Y i {Y_{i} } Yi在这里插入图片描述

原样本中含有p个变量,通过主成分分析后变量个数会减少很多。选取主成分的个数需要依据主成分贡献率与累计贡献率。第k个主成分的贡献率为:
在这里插入图片描述

通常情况下,该主成分的贡献率越大,说明保存的原有数据的信息越多。样本前m个主成分的累计贡献率为:
在这里插入图片描述

通常情况下,如果累计贡献率达到80%以上,便可以认为选取前m个主成分能够很好地保留原来样本的信息。累计贡献率是判断选取主成分个数的标准,也反映了这些主成分对原有信息的保留情况。

事实上,由于各个变量单位的不同,利用样本协差阵进行主成分分析往往不够准确,所以可以用样本的相关阵 R p × p {R_{p\times p} } Rp×p来替代协差阵 ∑ p × p {\sum p\times p} p×p,之后的计算过程同上。

在实际应用中,从p个变量中提取m个主成分,需要对这新的m个变量做合理的解释。而进行解释往往需要根据具体问题来判断,并结合该主成分中保存原各个变量的比重,即求解该主成分与原始各个变量的因子载荷量 ρ \rho ρ

在这里插入图片描述

其中表示第k主成分在原第i变量的因子载荷量(它表示变量Xi对主成分Yk的重要程度)。表示协差阵的第i行i列元素,表示第k个特征向量的第i行。如果是利用相关阵进行主成分分析,则因子载荷量为:
在这里插入图片描述

其中表示相关阵i行i列,即1。

例如,对于人的身材的数据,通常包含身高、坐高、胸围、手臂长、肋围、腰围六个变量(指标)。通过主成分分析判断前三个主成分的累计贡献率大小可以达到要求,便选取这三个主成分。为了解释这三个主成分的意义,可以求各个主成分在原始的6个变量上的因子载荷量。如果主成分Y1对所有的变量的载荷都大致相等,就可以总结该主成分为身材大小成分;若第二主成分在胸围、肋围、腰围变量有相对较大或中等的正载荷量,在身高、坐高、手臂长有相对较大或中等的负载荷,就可以总结为胖瘦成分。所以,对提取的主成分的解释,除了借助因子载荷,也要根据实际问题进行总结,如果出现解释不了主成分,或者能够解释,但是主成分中的某些数据不符合实际情况,那也就意味着主成分分析的失败,此时只能换其它的方法了。

三、PCA算法优缺点

  • PCA算法的主要优点有:
    • 仅仅需要以方差衡量信息量,不受数据集以外的因素影响。
    • 各主成分之间正交,可消除原始数据成分间的相互影响的因素。
    • 计算方法简单,主要运算是特征值分解,易于实现。
  • PCA算法的主要缺点有:
    • 主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。
    • 方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。
  • 19
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值