简述主成分分析法的基本步骤_主成分分析的基本步骤

主成分分析操作步骤

-------------精选文档-----------------

主成分分析操作步骤 1)先在 spss 中录入原始数据。

2)菜单栏上执行【分析】——【降维】——【因子分析】,打开因素分析对话 框,将要分析的变量都放入【变量】窗口中。

可编辑

-------------精选文档-----------------

3)设计分析的统计量 点击【描述】:选中“Statistics”中的“原始分析结果”和“相关性矩阵”中 的“系数”。(选中原始分析结果,SPSS 自动把原始数据标准差标准化,但不 显示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。

点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的 第一个选项即可。

可编辑

-------------精选文档-----------------

点击【旋转】:选取第一个选项“无”。(当因子分析的抽取方法选择主成分法时,且不进 行因子旋转,则其结果即为主成分分析)

点击【得分】:选中“保存为变量”,方法中选“回归”;再选中“显示因子得分系数矩阵”。

可编辑

-------------精选文档-----------------

点击【选项】:选择“按列表排除个案”。

4)结果解读

5)A. 相关系数矩阵:是 6 个变量两两之间的相关系数大小的方阵。通过相关系

数可以看到各个变量之间的相关,进而了解各个变量之间的关系。

相關

食品 衣着 燃料 住房 交通和通讯 娱乐教育文化

食品 1.000 .692 .319 .760 .738 .556

相關性矩陣

衣着

燃料

.692

.319

1.000

-.081

-.081

1.000

.663

-.089

.902

-.061

.389

.267

住房

交通和通讯 娱乐教育文化

.760

.738

.556

.663

.902

.389

-.089

-.061

.267

1.000

.831

.387

.831

1.000

.326

.387

.326

1.000

可编辑

-------------精选文档-----------------

B. 共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和

通讯最多,而娱乐教育文化损

2020-05-04

44人浏览

主成分分析操作步骤

主成分分析操作步骤 1)先在 spss 中录入原始数据。

2)菜单栏上执行【分析】——【降维】——【因子分析】,打开因素分析对话 框,将要分析的变量都放入【变量】窗口中。 3)设计分析的统计量 点击【描述】:选中“Statistics”中的“原始分析结果”和“相关性矩阵”中 的“系数”。(选中原始分析结果,SPSS 自动把原始数据标准差标准化,但不 显示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。

点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的 第一个选项即可。

点击【旋转】:选取第一个选项“无”。(当因子分析的抽取方法选择主成分法时,且不进 行因子旋转,则其结果即为主成分分析)

点击【得分】:选中“保存为变量”,方法中选“回归”;再选中“显示因子得分系数矩阵”。

点击【选项】:选择“按列表排除个案”。

4)结果解读 5)A. 相关系数矩阵:是 6 个变量两两之间的相关系数大小的方阵。通过相关系 数可以看到各个变量之间的相关,进而了解各个变量之间的关系。

相關性矩陣

相關

食品 衣着 燃料 住房 交通和通讯 娱乐教育文化

食品

.692 .319 .760 .738 .556

衣着 .692

.663 .902 .389

燃料 .319

.267

住房

交通和通讯 娱乐教育文化

.760

.738

.556

.663

.902

.389

.267

.831

.387

.831

.326

.387

.326

B. 共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和

通讯最多,而娱乐教育文化损失率最大。

Communalities

起始

擷取

食品 衣着

.878 .825

燃料

.841

住房 交通和通讯 娱乐教育文化

.810 .919 .584

擷取方法:主體元件分析。

C. 总方差的解释:系统默认方差大于 1 的为主成分。如果小于 1,说明这个主

因素的影响力度还不如一个基本的变量。所以只取前两个,且第一主成分的方差

为,第二主成分的方差为,前两个主成分累加占到总方差的%。

說明的變異數總計

起始特徵值

擷取平方和載入

元件

總計

變異的 % 累加 %

總計

變異的 % 累加 %

1

2

3

.600

4

2020-04-25

21人浏览

主成分分析操作步骤

主成分分析操作步骤 1)先在 spss 中录入原始数据。

2)菜单栏上执行【分析】——【降维】——【因子分析】,打开因素分析对话 框,将要分析的变量都放入【变量】窗口中。

3)设计分析的统计量 点击【描述】:选中“Statistics”中的“原始分析结果”和“相关性矩阵”中的 “系数”。(选中原始分析结果,SPSS 自动把原始数据标准差标准化,但不显 示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。

点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的 第一个选项即可。

点击【旋转】:选取第一个选项“无”。(当因子分析的抽取方法选择主成分法时,且不进 行因子旋转,则其结果即为主成分分析)

点击【得分】:选中“保存为变量”,方法中选“回归”;再选中“显示因子得分系数矩阵”。

点击【选项】:选择“按列表排除个案”。

4)结果解读

5)A. 相关系数矩阵:是 6 个变量两两之间的相关系数大小的方阵。通过相关系

数可以看到各个变量之间的相关,进而了解各个变量之间的关系。

相關

食品 衣着 燃料 住房 交通和通讯 娱乐教育文化

食品 1.000 .692 .319 .760 .738 .556

相關性矩陣

衣着

燃料

.692 1.000 -.081

.663 .902 .389

.319 -.081 1.000 -.089 -.061 .267

住房

交通和通讯 娱乐教育文化

.760 .663 -.089 1.000 .831 .387

.738 .902 -.061 .831 1.000 .326

.556 .389 .267 .387 .326 1.000

B. 共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和 通讯最多,而娱乐教育文化损失率最大。

Communalities 起始

擷取

食品 衣着 燃料 住房 交通和通讯 娱乐教育文化

1.000

.878

1.000

.825

1.000

.841

1.000

.810

1.000

.919

1.000

.584

擷取方法:主體元件分析。

C. 总方差的解释:系统默认方差大于 1 的为主成分。如果小于 1,说明这个主 因素的影响力度还不如一个基本的变量。所以只取前两个,且第一主成分的方

2020-05-12

15人浏览

主成分分析操作步骤

主成分分析操作步骤 1)先在 spss 中录入原始数据。

2)菜单栏上执行【分析】——【降维】——【因子分析】,打开因素分析对话 框ÿ

PCA(主成分分析)是一种常用的降维技术,它通过将原始数据投影到新的特征空间来实现数据的降维和去除冗余信息。下面是PCA主成分分析步骤: 1. 数据标准化:首先,需要对原始数据进行标准化处理,确保数据的均值为0,方差为1。这一步骤可以保证不同尺度的数据能够被平等对待。 2. 计算协方差矩阵:接下来,需要计算数据的协方差矩阵。协方差矩阵反映了数据中不同特征之间的相关性。 3. 计算特征值和特征向量:通过对协方差矩阵进行特征值分解,可以得到该矩阵的特征值和特征向量。特征向量代表了数据在新特征空间中的方向,而特征值代表了数据在这些方向上的重要程度。 4. 选择主成分:根据特征值的大小,可以选择最重要的特征向量作为新的特征空间的基。通常情况下,选择特征值较大的前k个特征向量作为主成分。 5. 构建投影矩阵:将选定的k个特征向量按列组成投影矩阵,用这个矩阵将原始数据投影到新的k维特征空间中。 6. 数据转换:最后,利用构建的投影矩阵,对原始数据进行线性变换,即将原始数据映射到新的k维特征空间中。这样就实现了数据的降维和去除冗余信息。 通过以上步骤,PCA主成分分析可以帮助我们在保留数据主要特征的基础上,将高维的原始数据转化为低维的新特征空间,从而方便我们进行进一步的数据分析和处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值