主成分分析操作步骤
-------------精选文档-----------------
主成分分析操作步骤 1)先在 spss 中录入原始数据。
2)菜单栏上执行【分析】——【降维】——【因子分析】,打开因素分析对话 框,将要分析的变量都放入【变量】窗口中。
可编辑
-------------精选文档-----------------
3)设计分析的统计量 点击【描述】:选中“Statistics”中的“原始分析结果”和“相关性矩阵”中 的“系数”。(选中原始分析结果,SPSS 自动把原始数据标准差标准化,但不 显示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。
点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的 第一个选项即可。
可编辑
-------------精选文档-----------------
点击【旋转】:选取第一个选项“无”。(当因子分析的抽取方法选择主成分法时,且不进 行因子旋转,则其结果即为主成分分析)
点击【得分】:选中“保存为变量”,方法中选“回归”;再选中“显示因子得分系数矩阵”。
可编辑
-------------精选文档-----------------
点击【选项】:选择“按列表排除个案”。
4)结果解读
5)A. 相关系数矩阵:是 6 个变量两两之间的相关系数大小的方阵。通过相关系
数可以看到各个变量之间的相关,进而了解各个变量之间的关系。
相關
食品 衣着 燃料 住房 交通和通讯 娱乐教育文化
食品 1.000 .692 .319 .760 .738 .556
相關性矩陣
衣着
燃料
.692
.319
1.000
-.081
-.081
1.000
.663
-.089
.902
-.061
.389
.267
住房
交通和通讯 娱乐教育文化
.760
.738
.556
.663
.902
.389
-.089
-.061
.267
1.000
.831
.387
.831
1.000
.326
.387
.326
1.000
可编辑
-------------精选文档-----------------
B. 共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和
通讯最多,而娱乐教育文化损
2020-05-04
44人浏览
主成分分析操作步骤
主成分分析操作步骤 1)先在 spss 中录入原始数据。
2)菜单栏上执行【分析】——【降维】——【因子分析】,打开因素分析对话 框,将要分析的变量都放入【变量】窗口中。 3)设计分析的统计量 点击【描述】:选中“Statistics”中的“原始分析结果”和“相关性矩阵”中 的“系数”。(选中原始分析结果,SPSS 自动把原始数据标准差标准化,但不 显示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。
点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的 第一个选项即可。
点击【旋转】:选取第一个选项“无”。(当因子分析的抽取方法选择主成分法时,且不进 行因子旋转,则其结果即为主成分分析)
点击【得分】:选中“保存为变量”,方法中选“回归”;再选中“显示因子得分系数矩阵”。
点击【选项】:选择“按列表排除个案”。
4)结果解读 5)A. 相关系数矩阵:是 6 个变量两两之间的相关系数大小的方阵。通过相关系 数可以看到各个变量之间的相关,进而了解各个变量之间的关系。
相關性矩陣
相關
食品 衣着 燃料 住房 交通和通讯 娱乐教育文化
食品
.692 .319 .760 .738 .556
衣着 .692
.663 .902 .389
燃料 .319
.267
住房
交通和通讯 娱乐教育文化
.760
.738
.556
.663
.902
.389
.267
.831
.387
.831
.326
.387
.326
B. 共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和
通讯最多,而娱乐教育文化损失率最大。
Communalities
起始
擷取
食品 衣着
.878 .825
燃料
.841
住房 交通和通讯 娱乐教育文化
.810 .919 .584
擷取方法:主體元件分析。
C. 总方差的解释:系统默认方差大于 1 的为主成分。如果小于 1,说明这个主
因素的影响力度还不如一个基本的变量。所以只取前两个,且第一主成分的方差
为,第二主成分的方差为,前两个主成分累加占到总方差的%。
說明的變異數總計
起始特徵值
擷取平方和載入
元件
總計
變異的 % 累加 %
總計
變異的 % 累加 %
1
2
3
.600
4
2020-04-25
21人浏览
主成分分析操作步骤
主成分分析操作步骤 1)先在 spss 中录入原始数据。
2)菜单栏上执行【分析】——【降维】——【因子分析】,打开因素分析对话 框,将要分析的变量都放入【变量】窗口中。
3)设计分析的统计量 点击【描述】:选中“Statistics”中的“原始分析结果”和“相关性矩阵”中的 “系数”。(选中原始分析结果,SPSS 自动把原始数据标准差标准化,但不显 示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。
点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的 第一个选项即可。
点击【旋转】:选取第一个选项“无”。(当因子分析的抽取方法选择主成分法时,且不进 行因子旋转,则其结果即为主成分分析)
点击【得分】:选中“保存为变量”,方法中选“回归”;再选中“显示因子得分系数矩阵”。
点击【选项】:选择“按列表排除个案”。
4)结果解读
5)A. 相关系数矩阵:是 6 个变量两两之间的相关系数大小的方阵。通过相关系
数可以看到各个变量之间的相关,进而了解各个变量之间的关系。
相關
食品 衣着 燃料 住房 交通和通讯 娱乐教育文化
食品 1.000 .692 .319 .760 .738 .556
相關性矩陣
衣着
燃料
.692 1.000 -.081
.663 .902 .389
.319 -.081 1.000 -.089 -.061 .267
住房
交通和通讯 娱乐教育文化
.760 .663 -.089 1.000 .831 .387
.738 .902 -.061 .831 1.000 .326
.556 .389 .267 .387 .326 1.000
B. 共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和 通讯最多,而娱乐教育文化损失率最大。
Communalities 起始
擷取
食品 衣着 燃料 住房 交通和通讯 娱乐教育文化
1.000
.878
1.000
.825
1.000
.841
1.000
.810
1.000
.919
1.000
.584
擷取方法:主體元件分析。
C. 总方差的解释:系统默认方差大于 1 的为主成分。如果小于 1,说明这个主 因素的影响力度还不如一个基本的变量。所以只取前两个,且第一主成分的方
2020-05-12
15人浏览
主成分分析操作步骤
主成分分析操作步骤 1)先在 spss 中录入原始数据。
2)菜单栏上执行【分析】——【降维】——【因子分析】,打开因素分析对话 框ÿ