人工智能实验四 决策树实验

将下面的文件按下图方式放置:

test_data.csv

色泽,根蒂,敲声,纹理,脐部,触感,好瓜
青绿,蜷缩,沉闷,清晰,凹陷,硬滑,1
浅白,蜷缩,浊响,清晰,凹陷,硬滑,1
乌黑,稍蜷,浊响,清晰,稍凹,硬滑,1
乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0
浅白,硬挺,清脆,模糊,平坦,硬滑,0
浅白,蜷缩,浊响,模糊,平坦,软粘,0
青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0

train_data.csv

色泽,根蒂,敲声,纹理,脐部,触感,好瓜
青绿,蜷缩,浊响,清晰,凹陷,硬滑,1
乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,1
乌黑,蜷缩,浊响,清晰,凹陷,硬滑,1
青绿,稍蜷,浊响,清晰,稍凹,软粘,1
乌黑,稍蜷,浊响,稍糊,稍凹,软粘,1
青绿,硬挺,清脆,清晰,平坦,软粘,0
浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0
乌黑,稍蜷,浊响,清晰,稍凹,软粘,0
浅白,蜷缩,浊响,模糊,平坦,硬滑,0
青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0

123.py

# 导入模块
import pandas as pd
import numpy as np
import os
from collections import Counter
from math import log2
#ID3算法

"""
功能:从给定的文件路径读取Excel文件,并返回pandas的DataFrame对象。
输入:filePath(文件路径)。
输出:DataFrame对象,包含Excel文件中的数据。
"""
def getData(filePath):
    data = pd.read_excel(filePath)
    return data

"""
功能:处理DataFrame数据,去掉第一列(通常是索引或ID列),并转换为列表的列表(即二维列表)形式。
输入:data(DataFrame对象)。
输出:处理后的二维列表。
"""
def dataDeal(data):
    dataList = np.array(data).tolist()
    dataSet = [element[1:] for element in dataList]
    return dataSet

"""
功能:从DataFrame中提取除第一列和最后一列外的所有列标签(特征标签)。
输入:data(DataFrame对象)。
输出:特征标签的列表。
"""
def getLabels(data):
    labels = list(data.columns)[1:-1]
    return labels

"""
功能:从数据集中提取所有不同的目标类别。
输入:dataSet(二维列表形式的数据集)。
输出:包含所有不同目标类别的集合。
"""
def targetClass(dataSet):
    classification = set([element[-1] for element in dataSet])
    return classification

"""
功能:使用多数投票规则确定数据集中最常见的目标类别。
输入:dataSet(二维列表形式的数据集)。
输出:最常见的目标类别。
"""
def majorityRule(dataSet):
    mostKind = Counter([element[-1] for element in dataSet]).most_common(1)
    majorityKind = mostKind[0][0]
    return majorityKind

"""
功能:计算数据集的信息熵,用于衡量数据集的混乱程度。
输入:dataSet(二维列表形式的数据集)。
输出:数据集的信息熵。
"""
def infoEntropy(dataSet):
    classColumnCnt = Counter([element[-1] for element in dataSet])
    Ent = 0
    for symbol in classColumnCnt:
        p_k = classColumnCnt[symbol] / len(dataSet)
        Ent = Ent - p_k * log2(p_k)
    return Ent

"""
功能:根据给定的属性值,从数据集中筛选出具有该属性值的所有行。
输入:dataSet(二维列表形式的数据集)、value(属性值)、iColumn(属性所在的列索引)。
输出:筛选后的二维列表。
"""
def makeAttributeData(dataSet, value, iColumn):
    attributeData = []
    for element in dataSet:
        if element[iColumn] == value:
            row = element[:iColumn]
            row.extend(element[iColumn + 1:])
            attributeData.append(row)
    return attributeData

"""
功能:计算按照某列属性划分数据集后得到的信息增益。信息增益用于衡量按该属性划分数据后,数据集混乱程度的减少量。
输入:dataSet(二维列表形式的数据集)、iColumn(属性所在的列索引)。
输出:按该属性划分数据集后的信息增益。
"""
def infoGain(dataSet, iColumn):
    Ent = infoEntropy(dataSet)
    tempGain = 0.0
    attribute = set([element[iColumn] for element in dataSet])
    for value in attribute:
        attributeData = makeAttributeData(dataSet, value, iColumn)
        tempGain = tempGain + len(attributeData) / len(dataSet) * infoEntropy(attributeData)
        Gain = Ent - tempGain
    return Gain

"""
功能:选择最优的划分属性,即信息增益最大的属性。
输入:dataSet(二维列表形式的数据集)、labels(特征标签的列表)。
输出:最优划分属性的列索引。
"""
def selectOptimalAttribute(dataSet, labels):
    bestGain = 0
    sequence = 0
    for iColumn in range(0, len(labels)):  # 不计最后的类别列
        Gain = infoGain(dataSet, iColumn)
        if Gain > bestGain:
            bestGain = Gain
            sequence = iColumn
        print(labels[iColumn], Gain)
    return sequence

"""
这个函数是构建决策树的核心。它接受两个参数:
dataSet:包含样本的数据集,每个样本是一个特征向量。
labels:与dataSet中每个样本的特征向量对应的标签列表。
"""
def createTree(dataSet, labels):
    classification = targetClass(dataSet)  # 获取类别种类(集合去重)
    if len(classification) == 1:
        return list(classification)[0]
    if len(labels) == 1:
        return majorityRule(dataSet)  # 返回样本种类较多的类别
    sequence = selectOptimalAttribute(dataSet, labels)
    print(labels)
    optimalAttribute = labels[sequence]
    del (labels[sequence])
    myTree = {optimalAttribute: {}}
    attribute = set([element[sequence] for element in dataSet])
    for value in attribute:
        print(myTree)
        print(value)
        subLabels = labels[:]
        myTree[optimalAttribute][value] = \
            createTree(makeAttributeData(dataSet, value, sequence), subLabels)
    return myTree

"""
这个函数是程序的入口点,它执行以下操作:

读取数据:
从给定的文件路径(Excel文件)读取数据。
数据处理:
使用dataDeal函数处理读取的数据,可能是为了转换为适合算法处理的格式。
获取标签:
使用getLabels函数获取数据的特征标签。
构建决策树:
调用createTree函数,传入处理后的数据集和特征标签,得到决策树。
返回决策树:
返回构建的决策树。
"""
def main():
    filePath = r'C:\Users\Lenovo\Desktop\Artificial\jueceshu001\西瓜数据集.xls'
    data = getData(filePath)
    dataSet = dataDeal(data)
    labels = getLabels(data)
    myTree = createTree(dataSet, labels)
    return myTree


if __name__ == '__main__':
    myTree = main()
print(myTree)

# 绘制可视化树

import matplotlib.pylab as plt
import matplotlib

# 能够显示中文
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['font.serif'] = ['SimHei']

# 分叉节点,也就是决策节点
decisionNode = dict(boxstyle="sawtooth", fc="0.8")

# 叶子节点
leafNode = dict(boxstyle="round4", fc="0.8")

# 箭头样式
arrow_args = dict(arrowstyle="<-")


def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    """
    绘制一个节点
    :param nodeTxt: 描述该节点的文本信息
    :param centerPt: 文本的坐标
    :param parentPt: 点的坐标,这里也是指父节点的坐标
    :param nodeType: 节点类型,分为叶子节点和决策节点
    :return:
    """
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                            xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)


def getNumLeafs(myTree):
    """
    获取叶节点的数目
    :param myTree:
    :return:
    """
    # 统计叶子节点的总数
    numLeafs = 0

    # 得到当前第一个key,也就是根节点
    firstStr = list(myTree.keys())[0]

    # 得到第一个key对应的内容
    secondDict = myTree[firstStr]

    # 递归遍历叶子节点
    for key in secondDict.keys():
        # 如果key对应的是一个字典,就递归调用
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        # 不是的话,说明此时是一个叶子节点
        else:
            numLeafs += 1
    return numLeafs


def getTreeDepth(myTree):
    """
    得到数的深度层数
    :param myTree:
    :return:
    """
    # 用来保存最大层数
    maxDepth = 0

    # 得到根节点
    firstStr = list(myTree.keys())[0]

    # 得到key对应的内容
    secondDic = myTree[firstStr]

    # 遍历所有子节点
    for key in secondDic.keys():
        # 如果该节点是字典,就递归调用
        if type(secondDic[key]).__name__ == 'dict':
            # 子节点的深度加1
            thisDepth = 1 + getTreeDepth(secondDic[key])

        # 说明此时是叶子节点
        else:
            thisDepth = 1

        # 替换最大层数
        if thisDepth > maxDepth:
            maxDepth = thisDepth

    return maxDepth


def plotMidText(cntrPt, parentPt, txtString):
    """
    计算出父节点和子节点的中间位置,填充信息
    :param cntrPt: 子节点坐标
    :param parentPt: 父节点坐标
    :param txtString: 填充的文本信息
    :return:
    """
    # 计算x轴的中间位置
    xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
    # 计算y轴的中间位置
    yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
    # 进行绘制
    createPlot.ax1.text(xMid, yMid, txtString)


def plotTree(myTree, parentPt, nodeTxt):
    """
    绘制出树的所有节点,递归绘制
    :param myTree: 树
    :param parentPt: 父节点的坐标
    :param nodeTxt: 节点的文本信息
    :return:
    """
    # 计算叶子节点数
    numLeafs = getNumLeafs(myTree=myTree)

    # 计算树的深度
    depth = getTreeDepth(myTree=myTree)

    # 得到根节点的信息内容
    firstStr = list(myTree.keys())[0]

    # 计算出当前根节点在所有子节点的中间坐标,也就是当前x轴的偏移量加上计算出来的根节点的中心位置作为x轴(比如说第一次:初始的x偏移量为:-1/2W,计算出来的根节点中心位置为:(1+W)/2W,相加得到:1/2),当前y轴偏移量作为y轴
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)

    # 绘制该节点与父节点的联系
    plotMidText(cntrPt, parentPt, nodeTxt)

    # 绘制该节点
    plotNode(firstStr, cntrPt, parentPt, decisionNode)

    # 得到当前根节点对应的子树
    secondDict = myTree[firstStr]

    # 计算出新的y轴偏移量,向下移动1/D,也就是下一层的绘制y轴
    plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD

    # 循环遍历所有的key
    for key in secondDict.keys():
        # 如果当前的key是字典的话,代表还有子树,则递归遍历
        if isinstance(secondDict[key], dict):
            plotTree(secondDict[key], cntrPt, str(key))
        else:
            # 计算新的x轴偏移量,也就是下个叶子绘制的x轴坐标向右移动了1/W
            plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
            # 打开注释可以观察叶子节点的坐标变化
            # print((plotTree.xOff, plotTree.yOff), secondDict[key])
            # 绘制叶子节点
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            # 绘制叶子节点和父节点的中间连线内容
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))

    # 返回递归之前,需要将y轴的偏移量增加,向上移动1/D,也就是返回去绘制上一层的y轴
    plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD


def createPlot(inTree):
    """
    需要绘制的决策树
    :param inTree: 决策树字典
    :return:
    """
    # 创建一个图像
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    # 计算出决策树的总宽度
    plotTree.totalW = float(getNumLeafs(inTree))
    # 计算出决策树的总深度
    plotTree.totalD = float(getTreeDepth(inTree))
    # 初始的x轴偏移量,也就是-1/2W,每次向右移动1/W,也就是第一个叶子节点绘制的x坐标为:1/2W,第二个:3/2W,第三个:5/2W,最后一个:(W-1)/2W
    plotTree.xOff = -0.5 / plotTree.totalW
    # 初始的y轴偏移量,每次向下或者向上移动1/D
    plotTree.yOff = 1.0
    # 调用函数进行绘制节点图像
    plotTree(inTree, (0.5, 1.0), '')
    # 绘制
    plt.show()


if __name__ == '__main__':
    createPlot(myTree)

C45_er.py

import pandas as pd
import numpy as np

#计算信息熵
def cal_information_entropy(data):
    data_label = data.iloc[:,-1]
    label_class =data_label.value_counts() #总共有多少类
    Ent = 0
    for k in label_class.keys():
        p_k = label_class[k]/len(data_label)
        Ent += -p_k*np.log2(p_k)
    return Ent

#计算给定数据属性a的信息增益
def cal_information_gain(data, a):
    Ent = cal_information_entropy(data)
    feature_class = data[a].value_counts() #特征有多少种可能
    gain = 0
    for v in feature_class.keys():
        weight = feature_class[v]/data.shape[0]
        Ent_v = cal_information_entropy(data.loc[data[a] == v])
        gain += weight*Ent_v
    return Ent - gain

def cal_gain_ratio(data , a):
    #先计算固有值intrinsic_value
    IV_a = 0
    feature_class = data[a].value_counts()  # 特征有多少种可能
    for v in feature_class.keys():
        weight = feature_class[v]/data.shape[0]
        IV_a += -weight*np.log2(weight)
    gain_ration = cal_information_gain(data,a)/IV_a
    return gain_ration

#获取标签最多的那一类
def get_most_label(data):
    data_label = data.iloc[:,-1]
    label_sort = data_label.value_counts(sort=True)
    return label_sort.keys()[0]

#挑选最优特征,即在信息增益大于平均水平的特征中选取增益率最高的特征
def get_best_feature(data):
    features = data.columns[:-1]
    res = {}
    for a in features:
        temp = cal_information_gain(data, a)
        gain_ration = cal_gain_ratio(data,a)
        res[a] = (temp,gain_ration)
    res = sorted(res.items(),key=lambda x:x[1][0],reverse=True) #按信息增益排名
    res_avg = sum([x[1][0] for x in res])/len(res) #信息增益平均水平
    good_res = [x for x in res if x[1][0] >= res_avg] #选取信息增益高于平均水平的特征
    result =sorted(good_res,key=lambda x:x[1][1],reverse=True) #将信息增益高的特征按照增益率进行排名
    return result[0][0] #返回高信息增益中增益率最大的特征

##将数据转化为(属性值:数据)的元组形式返回,并删除之前的特征列
def drop_exist_feature(data, best_feature):
    attr = pd.unique(data[best_feature])
    new_data = [(nd, data[data[best_feature] == nd]) for nd in attr]
    new_data = [(n[0], n[1].drop([best_feature], axis=1)) for n in new_data]
    return new_data

#创建决策树
def create_tree(data):
    data_label = data.iloc[:,-1]
    if len(data_label.value_counts()) == 1: #只有一类
        return data_label.values[0]
    if all(len(data[i].value_counts()) == 1 for i in data.iloc[:,:-1].columns): #所有数据的特征值一样,选样本最多的类作为分类结果
        return get_most_label(data)
    best_feature = get_best_feature(data) #根据信息增益得到的最优划分特征
    Tree = {best_feature:{}} #用字典形式存储决策树
    exist_vals = pd.unique(data[best_feature])  # 当前数据下最佳特征的取值
    if len(exist_vals) != len(column_count[best_feature]):  # 如果特征的取值相比于原来的少了
        no_exist_attr = set(column_count[best_feature]) - set(exist_vals)  # 少的那些特征
        for no_feat in no_exist_attr:
            Tree[best_feature][no_feat] = get_most_label(data)  # 缺失的特征分类为当前类别最多的
    for item in drop_exist_feature(data,best_feature): #根据特征值的不同递归创建决策树
        Tree[best_feature][item[0]] = create_tree(item[1])
    return Tree

def predict(Tree , test_data):
    first_feature = list(Tree.keys())[0]
    second_dict = Tree[first_feature]
    input_first = test_data.get(first_feature)
    input_value = second_dict[input_first]
    if isinstance(input_value , dict): #判断分支还是不是字典
        class_label = predict(input_value, test_data)
    else:
        class_label = input_value
    return class_label

if __name__ == '__main__':
    #读取数据
    data = pd.read_csv('data_word.csv')
    # 统计每个特征的取值情况作为全局变量
    column_count = dict([(ds, list(pd.unique(data[ds]))) for ds in data.iloc[:, :-1].columns])

    #创建决策树
    dicision_Tree = create_tree(data)
    print(dicision_Tree)
    #测试数据
    test_data_1 = {'色泽':'青绿','根蒂':'蜷缩','敲声':'浊响','纹理':'稍糊','脐部':'凹陷','触感':'硬滑'}
    test_data_2 = {'色泽': '乌黑', '根蒂': '稍蜷', '敲声': '浊响', '纹理': '清晰', '脐部': '凹陷', '触感': '硬滑'}
    result = predict(dicision_Tree,test_data_1)
    print('test_data_1的分类结果为:'+'好瓜'if result == 1 else 'test_data_1的分类结果为:坏瓜')

    result = predict(dicision_Tree,test_data_2)
    print('test_data_2的分类结果为:'+'好瓜'if result == 1 else 'test_data_2的分类结果为:坏瓜')



    # 绘制可视化树

    import matplotlib.pylab as plt
    import matplotlib

    # 能够显示中文
    matplotlib.rcParams['font.sans-serif'] = ['SimHei']
    matplotlib.rcParams['font.serif'] = ['SimHei']

    # 分叉节点,也就是决策节点
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")

    # 叶子节点
    leafNode = dict(boxstyle="round4", fc="0.8")

    # 箭头样式
    arrow_args = dict(arrowstyle="<-")


    def plotNode(nodeTxt, centerPt, parentPt, nodeType):
        """
        绘制一个节点
        :param nodeTxt: 描述该节点的文本信息
        :param centerPt: 文本的坐标
        :param parentPt: 点的坐标,这里也是指父节点的坐标
        :param nodeType: 节点类型,分为叶子节点和决策节点
        :return:
        """
        createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                                xytext=centerPt, textcoords='axes fraction',
                                va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)


    def getNumLeafs(myTree):
        """
        获取叶节点的数目
        :param myTree:
        :return:
        """
        # 统计叶子节点的总数
        numLeafs = 0

        # 得到当前第一个key,也就是根节点
        firstStr = list(myTree.keys())[0]

        # 得到第一个key对应的内容
        secondDict = myTree[firstStr]

        # 递归遍历叶子节点
        for key in secondDict.keys():
            # 如果key对应的是一个字典,就递归调用
            if type(secondDict[key]).__name__ == 'dict':
                numLeafs += getNumLeafs(secondDict[key])
            # 不是的话,说明此时是一个叶子节点
            else:
                numLeafs += 1
        return numLeafs


    def getTreeDepth(myTree):
        """
        得到数的深度层数
        :param myTree:
        :return:
        """
        # 用来保存最大层数
        maxDepth = 0

        # 得到根节点
        firstStr = list(myTree.keys())[0]

        # 得到key对应的内容
        secondDic = myTree[firstStr]

        # 遍历所有子节点
        for key in secondDic.keys():
            # 如果该节点是字典,就递归调用
            if type(secondDic[key]).__name__ == 'dict':
                # 子节点的深度加1
                thisDepth = 1 + getTreeDepth(secondDic[key])

            # 说明此时是叶子节点
            else:
                thisDepth = 1

            # 替换最大层数
            if thisDepth > maxDepth:
                maxDepth = thisDepth

        return maxDepth


    def plotMidText(cntrPt, parentPt, txtString):
        """
        计算出父节点和子节点的中间位置,填充信息
        :param cntrPt: 子节点坐标
        :param parentPt: 父节点坐标
        :param txtString: 填充的文本信息
        :return:
        """
        # 计算x轴的中间位置
        xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
        # 计算y轴的中间位置
        yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
        # 进行绘制
        createPlot.ax1.text(xMid, yMid, txtString)


    def plotTree(myTree, parentPt, nodeTxt):
        """
        绘制出树的所有节点,递归绘制
        :param myTree: 树
        :param parentPt: 父节点的坐标
        :param nodeTxt: 节点的文本信息
        :return:
        """
        # 计算叶子节点数
        numLeafs = getNumLeafs(myTree=myTree)

        # 计算树的深度
        depth = getTreeDepth(myTree=myTree)

        # 得到根节点的信息内容
        firstStr = list(myTree.keys())[0]

        # 计算出当前根节点在所有子节点的中间坐标,也就是当前x轴的偏移量加上计算出来的根节点的中心位置作为x轴(比如说第一次:初始的x偏移量为:-1/2W,计算出来的根节点中心位置为:(1+W)/2W,相加得到:1/2),当前y轴偏移量作为y轴
        cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)

        # 绘制该节点与父节点的联系
        plotMidText(cntrPt, parentPt, nodeTxt)

        # 绘制该节点
        plotNode(firstStr, cntrPt, parentPt, decisionNode)

        # 得到当前根节点对应的子树
        secondDict = myTree[firstStr]

        # 计算出新的y轴偏移量,向下移动1/D,也就是下一层的绘制y轴
        plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD

        # 循环遍历所有的key
        for key in secondDict.keys():
            # 如果当前的key是字典的话,代表还有子树,则递归遍历
            if isinstance(secondDict[key], dict):
                plotTree(secondDict[key], cntrPt, str(key))
            else:
                # 计算新的x轴偏移量,也就是下个叶子绘制的x轴坐标向右移动了1/W
                plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
                # 打开注释可以观察叶子节点的坐标变化
                # print((plotTree.xOff, plotTree.yOff), secondDict[key])
                # 绘制叶子节点
                plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
                # 绘制叶子节点和父节点的中间连线内容
                plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))

        # 返回递归之前,需要将y轴的偏移量增加,向上移动1/D,也就是返回去绘制上一层的y轴
        plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD


    def createPlot(inTree):
        """
        需要绘制的决策树
        :param inTree: 决策树字典
        :return:
        """
        # 创建一个图像
        fig = plt.figure(1, facecolor='white')
        fig.clf()
        axprops = dict(xticks=[], yticks=[])
        createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
        # 计算出决策树的总宽度
        plotTree.totalW = float(getNumLeafs(inTree))
        # 计算出决策树的总深度
        plotTree.totalD = float(getTreeDepth(inTree))
        # 初始的x轴偏移量,也就是-1/2W,每次向右移动1/W,也就是第一个叶子节点绘制的x坐标为:1/2W,第二个:3/2W,第三个:5/2W,最后一个:(W-1)/2W
        plotTree.xOff = -0.5 / plotTree.totalW
        # 初始的y轴偏移量,每次向下或者向上移动1/D
        plotTree.yOff = 1.0
        # 调用函数进行绘制节点图像
        plotTree(inTree, (0.5, 1.0), '')
        # 绘制
        plt.show()


    if __name__ == '__main__':
        createPlot(dicision_Tree)

CART_er.py

import pandas as pd
import numpy as np

#计算基尼指数
def gini(data):
    data_label = data.iloc[:, -1]
    label_num = data_label.value_counts() #有几类,每一类的数量
    res = 0
    for k in label_num.keys():
        p_k = label_num[k]/len(data_label)
        res += p_k ** 2
    return 1 - res

# 计算每个特征取值的基尼指数,找出最优切分点
def gini_index(data,a):
    feature_class = data[a].value_counts()
    res = []
    for feature in feature_class.keys():
        weight = feature_class[feature]/len(data)
        gini_value = gini(data.loc[data[a] == feature])
        res.append([feature, weight * gini_value])
    res = sorted(res, key = lambda x: x[-1])
    return res[0]

#获取标签最多的那一类
def get_most_label(data):
    data_label = data.iloc[:,-1]
    label_sort = data_label.value_counts(sort=True)
    return label_sort.keys()[0]

#挑选最优特征,即基尼指数最小的特征
def get_best_feature(data):
    features = data.columns[:-1]
    res = {}
    for a in features:
        temp = gini_index(data, a) #temp是列表,【feature_value, gini】
        res[a] = temp
    res = sorted(res.items(),key=lambda x:x[1][1])
    return res[0][0], res[0][1][0]

def drop_exist_feature(data, best_feature, value, type):
    attr = pd.unique(data[best_feature]) #表示特征所有取值的数组
    if type == 1: #使用特征==value的值进行划分
        new_data = [[value], data.loc[data[best_feature] == value]]
    else:
        new_data = [attr, data.loc[data[best_feature] != value]]
    new_data[1] = new_data[1].drop([best_feature], axis=1) #删除该特征
    return new_data

#创建决策树
def create_tree(data):
    data_label = data.iloc[:,-1]
    if len(data_label.value_counts()) == 1: #只有一类
        return data_label.values[0]
    if all(len(data[i].value_counts()) == 1 for i in data.iloc[:,:-1].columns): #所有数据的特征值一样,选样本最多的类作为分类结果
        return get_most_label(data)
    best_feature, best_feature_value = get_best_feature(data) #根据信息增益得到的最优划分特征
    Tree = {best_feature:{}} #用字典形式存储决策树

    Tree[best_feature][best_feature_value] = create_tree(drop_exist_feature(data, best_feature, best_feature_value, 1)[1])
    Tree[best_feature]['Others'] = create_tree(drop_exist_feature(data, best_feature, best_feature_value, 2)[1])
    return Tree

def predict(Tree , test_data):
    first_feature = list(Tree.keys())[0] #第一个特征
    second_dict = Tree[first_feature] #第一个特征后面的字典
    input_first = test_data.get(first_feature) #预测输入的第一个特征值是多少
    input_value = second_dict[input_first] if input_first == first_feature else second_dict['Others'] #预测输入对应的字典
    if isinstance(input_value , dict): #判断分支还是不是字典
        class_label = predict(input_value, test_data)
    else:
        class_label = input_value
    return class_label

if __name__ == '__main__':
    #读取数据
    data = pd.read_csv('data_word.csv')

    #创建决策树
    dicision_Tree = create_tree(data)
    print(dicision_Tree)
    #测试数据
    test_data_1 = {'色泽':'青绿','根蒂':'蜷缩','敲声':'浊响','纹理':'稍糊','脐部':'凹陷','触感':'硬滑'}
    test_data_2 = {'色泽': '乌黑', '根蒂': '稍蜷', '敲声': '浊响', '纹理': '清晰', '脐部': '凹陷', '触感': '硬滑'}
    result = predict(dicision_Tree,test_data_1)
    print('test_data_1的分类结果为:'+'好瓜'if result == 1 else 'test_data_1的分类结果为:坏瓜')

    result = predict(dicision_Tree,test_data_2)
    print('test_data_2的分类结果为:'+'好瓜'if result == 1 else 'test_data_2的分类结果为:坏瓜')


    # 绘制可视化树

    import matplotlib.pylab as plt
    import matplotlib

    # 能够显示中文
    matplotlib.rcParams['font.sans-serif'] = ['SimHei']
    matplotlib.rcParams['font.serif'] = ['SimHei']

    # 分叉节点,也就是决策节点
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")

    # 叶子节点
    leafNode = dict(boxstyle="round4", fc="0.8")

    # 箭头样式
    arrow_args = dict(arrowstyle="<-")


    def plotNode(nodeTxt, centerPt, parentPt, nodeType):
        """
        绘制一个节点
        :param nodeTxt: 描述该节点的文本信息
        :param centerPt: 文本的坐标
        :param parentPt: 点的坐标,这里也是指父节点的坐标
        :param nodeType: 节点类型,分为叶子节点和决策节点
        :return:
        """
        createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                                xytext=centerPt, textcoords='axes fraction',
                                va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)


    def getNumLeafs(myTree):
        """
        获取叶节点的数目
        :param myTree:
        :return:
        """
        # 统计叶子节点的总数
        numLeafs = 0

        # 得到当前第一个key,也就是根节点
        firstStr = list(myTree.keys())[0]

        # 得到第一个key对应的内容
        secondDict = myTree[firstStr]

        # 递归遍历叶子节点
        for key in secondDict.keys():
            # 如果key对应的是一个字典,就递归调用
            if type(secondDict[key]).__name__ == 'dict':
                numLeafs += getNumLeafs(secondDict[key])
            # 不是的话,说明此时是一个叶子节点
            else:
                numLeafs += 1
        return numLeafs


    def getTreeDepth(myTree):
        """
        得到数的深度层数
        :param myTree:
        :return:
        """
        # 用来保存最大层数
        maxDepth = 0

        # 得到根节点
        firstStr = list(myTree.keys())[0]

        # 得到key对应的内容
        secondDic = myTree[firstStr]

        # 遍历所有子节点
        for key in secondDic.keys():
            # 如果该节点是字典,就递归调用
            if type(secondDic[key]).__name__ == 'dict':
                # 子节点的深度加1
                thisDepth = 1 + getTreeDepth(secondDic[key])

            # 说明此时是叶子节点
            else:
                thisDepth = 1

            # 替换最大层数
            if thisDepth > maxDepth:
                maxDepth = thisDepth

        return maxDepth


    def plotMidText(cntrPt, parentPt, txtString):
        """
        计算出父节点和子节点的中间位置,填充信息
        :param cntrPt: 子节点坐标
        :param parentPt: 父节点坐标
        :param txtString: 填充的文本信息
        :return:
        """
        # 计算x轴的中间位置
        xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
        # 计算y轴的中间位置
        yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
        # 进行绘制
        createPlot.ax1.text(xMid, yMid, txtString)


    def plotTree(myTree, parentPt, nodeTxt):
        """
        绘制出树的所有节点,递归绘制
        :param myTree: 树
        :param parentPt: 父节点的坐标
        :param nodeTxt: 节点的文本信息
        :return:
        """
        # 计算叶子节点数
        numLeafs = getNumLeafs(myTree=myTree)

        # 计算树的深度
        depth = getTreeDepth(myTree=myTree)

        # 得到根节点的信息内容
        firstStr = list(myTree.keys())[0]

        # 计算出当前根节点在所有子节点的中间坐标,也就是当前x轴的偏移量加上计算出来的根节点的中心位置作为x轴(比如说第一次:初始的x偏移量为:-1/2W,计算出来的根节点中心位置为:(1+W)/2W,相加得到:1/2),当前y轴偏移量作为y轴
        cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)

        # 绘制该节点与父节点的联系
        plotMidText(cntrPt, parentPt, nodeTxt)

        # 绘制该节点
        plotNode(firstStr, cntrPt, parentPt, decisionNode)

        # 得到当前根节点对应的子树
        secondDict = myTree[firstStr]

        # 计算出新的y轴偏移量,向下移动1/D,也就是下一层的绘制y轴
        plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD

        # 循环遍历所有的key
        for key in secondDict.keys():
            # 如果当前的key是字典的话,代表还有子树,则递归遍历
            if isinstance(secondDict[key], dict):
                plotTree(secondDict[key], cntrPt, str(key))
            else:
                # 计算新的x轴偏移量,也就是下个叶子绘制的x轴坐标向右移动了1/W
                plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
                # 打开注释可以观察叶子节点的坐标变化
                # print((plotTree.xOff, plotTree.yOff), secondDict[key])
                # 绘制叶子节点
                plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
                # 绘制叶子节点和父节点的中间连线内容
                plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))

        # 返回递归之前,需要将y轴的偏移量增加,向上移动1/D,也就是返回去绘制上一层的y轴
        plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD


    def createPlot(inTree):
        """
        需要绘制的决策树
        :param inTree: 决策树字典
        :return:
        """
        # 创建一个图像
        fig = plt.figure(1, facecolor='white')
        fig.clf()
        axprops = dict(xticks=[], yticks=[])
        createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
        # 计算出决策树的总宽度
        plotTree.totalW = float(getNumLeafs(inTree))
        # 计算出决策树的总深度
        plotTree.totalD = float(getTreeDepth(inTree))
        # 初始的x轴偏移量,也就是-1/2W,每次向右移动1/W,也就是第一个叶子节点绘制的x坐标为:1/2W,第二个:3/2W,第三个:5/2W,最后一个:(W-1)/2W
        plotTree.xOff = -0.5 / plotTree.totalW
        # 初始的y轴偏移量,每次向下或者向上移动1/D
        plotTree.yOff = 1.0
        # 调用函数进行绘制节点图像
        plotTree(inTree, (0.5, 1.0), '')
        # 绘制
        plt.show()


    if __name__ == '__main__':
        createPlot(dicision_Tree)

data_word.csv

色泽,根蒂,敲声,纹理,脐部,触感,好瓜
青绿,蜷缩,浊响,清晰,凹陷,硬滑,1
乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,1
乌黑,蜷缩,浊响,清晰,凹陷,硬滑,1
青绿,蜷缩,沉闷,清晰,凹陷,硬滑,1
浅白,蜷缩,浊响,清晰,凹陷,硬滑,1
青绿,稍蜷,浊响,清晰,稍凹,软粘,1
乌黑,稍蜷,浊响,稍糊,稍凹,软粘,1
乌黑,稍蜷,浊响,清晰,稍凹,硬滑,1
乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0
青绿,硬挺,清脆,清晰,平坦,软粘,0
浅白,硬挺,清脆,模糊,平坦,硬滑,0
浅白,蜷缩,浊响,模糊,平坦,软粘,0
青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0
浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0
乌黑,稍蜷,浊响,清晰,稍凹,软粘,0
浅白,蜷缩,浊响,模糊,平坦,硬滑,0
青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0

ID3_01_er.py

import pandas as pd
import numpy as np

#计算信息熵
def cal_information_entropy(data):
    data_label = data.iloc[:,-1]
    label_class =data_label.value_counts() #总共有多少类
    Ent = 0
    for k in label_class.keys():
        p_k = label_class[k]/len(data_label)
        Ent += -p_k*np.log2(p_k)
    return Ent

#计算给定数据属性a的信息增益
def cal_information_gain(data, a):
    Ent = cal_information_entropy(data)
    feature_class = data[a].value_counts() #特征有多少种可能
    gain = 0
    for v in feature_class.keys():
        weight = feature_class[v]/data.shape[0]
        Ent_v = cal_information_entropy(data.loc[data[a] == v])
        gain += weight*Ent_v
    return Ent - gain

#获取标签最多的那一类
def get_most_label(data):
    data_label = data.iloc[:,-1]
    label_sort = data_label.value_counts(sort=True)
    return label_sort.keys()[0]

#挑选最优特征,即信息增益最大的特征
def get_best_feature(data):
    features = data.columns[:-1]
    res = {}
    for a in features:
        temp = cal_information_gain(data, a)
        res[a] = temp
    res = sorted(res.items(),key=lambda x:x[1],reverse=True)
    return res[0][0]

##将数据转化为(属性值:数据)的元组形式返回,并删除之前的特征列
def drop_exist_feature(data, best_feature):
    attr = pd.unique(data[best_feature])
    new_data = [(nd, data[data[best_feature] == nd]) for nd in attr]
    new_data = [(n[0], n[1].drop([best_feature], axis=1)) for n in new_data]
    return new_data

#创建决策树
def create_tree(data):
    data_label = data.iloc[:,-1]
    if len(data_label.value_counts()) == 1: #只有一类
        return data_label.values[0]
    if all(len(data[i].value_counts()) == 1 for i in data.iloc[:,:-1].columns): #所有数据的特征值一样,选样本最多的类作为分类结果
        return get_most_label(data)
    best_feature = get_best_feature(data) #根据信息增益得到的最优划分特征
    Tree = {best_feature:{}} #用字典形式存储决策树
    exist_vals = pd.unique(data[best_feature]) #当前数据下最佳特征的取值
    if len(exist_vals) != len(column_count[best_feature]): #如果特征的取值相比于原来的少了
        no_exist_attr = set(column_count[best_feature]) - set(exist_vals) #少的那些特征
        for no_feat in no_exist_attr:
            Tree[best_feature][no_feat] = get_most_label(data) #缺失的特征分类为当前类别最多的

    for item in drop_exist_feature(data,best_feature): #根据特征值的不同递归创建决策树
        Tree[best_feature][item[0]] = create_tree(item[1])
    return Tree

#{'纹理': {'清晰': {'根蒂': {'蜷缩': 1, '稍蜷': {'色泽': {'青绿': 1, '乌黑': {'触感': {'硬滑': 1, '软粘': 0}}}}, '硬挺': 0}}, '稍糊': {'触感': {'软粘': 1, '硬滑': 0}}, '模糊': 0}}
def predict(Tree , test_data):
    first_feature = list(Tree.keys())[0]
    second_dict = Tree[first_feature]
    input_first = test_data.get(first_feature)
    input_value = second_dict[input_first]
    if isinstance(input_value , dict): #判断分支还是不是字典
        class_label = predict(input_value, test_data)
    else:
        class_label = input_value
    return class_label

if __name__ == '__main__':
    #读取数据
    data = pd.read_csv('data_word.csv')

    #统计每个特征的取值情况作为全局变量
    column_count = dict([(ds, list(pd.unique(data[ds]))) for ds in data.iloc[:, :-1].columns])

    #创建决策树
    dicision_Tree = create_tree(data)
    print(dicision_Tree)
    #测试数据
    test_data_1 = {'色泽':'青绿','根蒂':'蜷缩','敲声':'浊响','纹理':'稍糊','脐部':'凹陷','触感':'硬滑'}
    test_data_2 = {'色泽': '乌黑', '根蒂': '稍蜷', '敲声': '浊响', '纹理': '清晰', '脐部': '凹陷', '触感': '硬滑'}

    result = predict(dicision_Tree,test_data_1)
    print('test_data_1的分类结果为:'+'好瓜'if result == 1 else 'test_data_1的分类结果为:坏瓜')

    result = predict(dicision_Tree,test_data_2)
    print('test_data_2的分类结果为:'+'好瓜'if result == 1 else 'test_data_2的分类结果为:坏瓜')

    # 绘制可视化树

    import matplotlib.pylab as plt
    import matplotlib

    # 能够显示中文
    matplotlib.rcParams['font.sans-serif'] = ['SimHei']
    matplotlib.rcParams['font.serif'] = ['SimHei']

    # 分叉节点,也就是决策节点
    decisionNode = dict(boxstyle="sawtooth", fc="0.8")

    # 叶子节点
    leafNode = dict(boxstyle="round4", fc="0.8")

    # 箭头样式
    arrow_args = dict(arrowstyle="<-")


    def plotNode(nodeTxt, centerPt, parentPt, nodeType):
        """
        绘制一个节点
        :param nodeTxt: 描述该节点的文本信息
        :param centerPt: 文本的坐标
        :param parentPt: 点的坐标,这里也是指父节点的坐标
        :param nodeType: 节点类型,分为叶子节点和决策节点
        :return:
        """
        createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                                xytext=centerPt, textcoords='axes fraction',
                                va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)


    def getNumLeafs(myTree):
        """
        获取叶节点的数目
        :param myTree:
        :return:
        """
        # 统计叶子节点的总数
        numLeafs = 0

        # 得到当前第一个key,也就是根节点
        firstStr = list(myTree.keys())[0]

        # 得到第一个key对应的内容
        secondDict = myTree[firstStr]

        # 递归遍历叶子节点
        for key in secondDict.keys():
            # 如果key对应的是一个字典,就递归调用
            if type(secondDict[key]).__name__ == 'dict':
                numLeafs += getNumLeafs(secondDict[key])
            # 不是的话,说明此时是一个叶子节点
            else:
                numLeafs += 1
        return numLeafs


    def getTreeDepth(myTree):
        """
        得到数的深度层数
        :param myTree:
        :return:
        """
        # 用来保存最大层数
        maxDepth = 0

        # 得到根节点
        firstStr = list(myTree.keys())[0]

        # 得到key对应的内容
        secondDic = myTree[firstStr]

        # 遍历所有子节点
        for key in secondDic.keys():
            # 如果该节点是字典,就递归调用
            if type(secondDic[key]).__name__ == 'dict':
                # 子节点的深度加1
                thisDepth = 1 + getTreeDepth(secondDic[key])

            # 说明此时是叶子节点
            else:
                thisDepth = 1

            # 替换最大层数
            if thisDepth > maxDepth:
                maxDepth = thisDepth

        return maxDepth


    def plotMidText(cntrPt, parentPt, txtString):
        """
        计算出父节点和子节点的中间位置,填充信息
        :param cntrPt: 子节点坐标
        :param parentPt: 父节点坐标
        :param txtString: 填充的文本信息
        :return:
        """
        # 计算x轴的中间位置
        xMid = (parentPt[0] - cntrPt[0]) / 2.0 + cntrPt[0]
        # 计算y轴的中间位置
        yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
        # 进行绘制
        createPlot.ax1.text(xMid, yMid, txtString)


    def plotTree(myTree, parentPt, nodeTxt):
        """
        绘制出树的所有节点,递归绘制
        :param myTree: 树
        :param parentPt: 父节点的坐标
        :param nodeTxt: 节点的文本信息
        :return:
        """
        # 计算叶子节点数
        numLeafs = getNumLeafs(myTree=myTree)

        # 计算树的深度
        depth = getTreeDepth(myTree=myTree)

        # 得到根节点的信息内容
        firstStr = list(myTree.keys())[0]

        # 计算出当前根节点在所有子节点的中间坐标,也就是当前x轴的偏移量加上计算出来的根节点的中心位置作为x轴(比如说第一次:初始的x偏移量为:-1/2W,计算出来的根节点中心位置为:(1+W)/2W,相加得到:1/2),当前y轴偏移量作为y轴
        cntrPt = (plotTree.xOff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yOff)

        # 绘制该节点与父节点的联系
        plotMidText(cntrPt, parentPt, nodeTxt)

        # 绘制该节点
        plotNode(firstStr, cntrPt, parentPt, decisionNode)

        # 得到当前根节点对应的子树
        secondDict = myTree[firstStr]

        # 计算出新的y轴偏移量,向下移动1/D,也就是下一层的绘制y轴
        plotTree.yOff = plotTree.yOff - 1.0 / plotTree.totalD

        # 循环遍历所有的key
        for key in secondDict.keys():
            # 如果当前的key是字典的话,代表还有子树,则递归遍历
            if isinstance(secondDict[key], dict):
                plotTree(secondDict[key], cntrPt, str(key))
            else:
                # 计算新的x轴偏移量,也就是下个叶子绘制的x轴坐标向右移动了1/W
                plotTree.xOff = plotTree.xOff + 1.0 / plotTree.totalW
                # 打开注释可以观察叶子节点的坐标变化
                # print((plotTree.xOff, plotTree.yOff), secondDict[key])
                # 绘制叶子节点
                plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
                # 绘制叶子节点和父节点的中间连线内容
                plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))

        # 返回递归之前,需要将y轴的偏移量增加,向上移动1/D,也就是返回去绘制上一层的y轴
        plotTree.yOff = plotTree.yOff + 1.0 / plotTree.totalD


    def createPlot(inTree):
        """
        需要绘制的决策树
        :param inTree: 决策树字典
        :return:
        """
        # 创建一个图像
        fig = plt.figure(1, facecolor='white')
        fig.clf()
        axprops = dict(xticks=[], yticks=[])
        createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
        # 计算出决策树的总宽度
        plotTree.totalW = float(getNumLeafs(inTree))
        # 计算出决策树的总深度
        plotTree.totalD = float(getTreeDepth(inTree))
        # 初始的x轴偏移量,也就是-1/2W,每次向右移动1/W,也就是第一个叶子节点绘制的x坐标为:1/2W,第二个:3/2W,第三个:5/2W,最后一个:(W-1)/2W
        plotTree.xOff = -0.5 / plotTree.totalW
        # 初始的y轴偏移量,每次向下或者向上移动1/D
        plotTree.yOff = 1.0
        # 调用函数进行绘制节点图像
        plotTree(inTree, (0.5, 1.0), '')
        # 绘制
        plt.show()


    if __name__ == '__main__':
        createPlot(dicision_Tree)

西瓜数据集.txt

青绿 蜷缩 浊响 清晰 凹陷 硬滑 是
乌黑 蜷缩 沉闷 清晰 凹陷 硬滑 是
乌黑 蜷缩 浊响 清晰 凹陷 硬滑 是
青绿 蜷缩 沉闷 清晰 凹陷 硬滑 是
浅白 蜷缩 浊响 清晰 凹陷 硬滑 是
青绿 稍蜷 浊响 清晰 稍凹 软粘 是
乌黑 稍蜷 浊响 稍糊 稍凹 软粘 是
乌黑 稍蜷 浊响 清晰 稍凹 硬滑 是
乌黑 稍蜷 沉闷 稍糊 稍凹 硬滑 否
青绿 硬挺 清脆 清晰 平坦 软粘 否
浅白 硬挺 清脆 模糊 平坦 硬滑 否
浅白 蜷缩 浊响 模糊 平坦 软粘 否
青绿 稍蜷 浊响 稍糊 凹陷 硬滑 否
浅白 稍蜷 沉闷 稍糊 凹陷 硬滑 否
乌黑 稍蜷 浊响 清晰 稍凹 软粘 否
浅白 蜷缩 浊响 模糊 平坦 硬滑 否
青绿 蜷缩 沉闷 稍糊 稍凹 硬滑 否

西瓜数据集.xls

编号色泽根蒂敲声纹理脐部触感好瓜
1青绿蜷缩浊响清晰凹陷硬滑
2乌黑蜷缩沉闷清晰凹陷硬滑
3乌黑蜷缩浊响清晰凹陷硬滑
4青绿蜷缩沉闷清晰凹陷硬滑
5浅白蜷缩浊响清晰凹陷硬滑
6青绿稍蜷浊响清晰稍凹软粘
7乌黑稍蜷浊响稍糊稍凹软粘
8乌黑稍蜷浊响清晰稍凹硬滑
9乌黑稍蜷沉闷稍糊稍凹硬滑
10青绿硬挺清脆清晰平坦软粘
11浅白硬挺清脆模糊平坦硬滑
12浅白蜷缩浊响模糊平坦软粘
13青绿稍蜷浊响稍糊凹陷硬滑
14浅白稍蜷沉闷稍糊凹陷硬滑
15乌黑稍蜷浊响清晰稍凹软粘
16浅白蜷缩浊响模糊平坦硬滑
17青绿蜷缩沉闷稍糊稍凹硬滑

遇到的问题和解决方法:

1.用阿里镜像源安装时出现找不到合适的包。

解决:pip install somepackage,速度太慢,并且找不到合适的包。有时候特定的镜像源可能更快或者有更多你需要的包。你可以尝试更换pip的镜像源进行安装。例如使用清华镜像源:

pip install somepackage -i https://pypi.tuna.tsinghua.edu.cn/simple/

2.Python报错:ImportError: Missing optional dependency ‘xlrd‘. Install xlrd >= 1.0.0 for Excel support

解决:使用清华镜像源安装,在终端里输入命令:

pip install xlrd -i https://pypi.tuna.tsinghua.edu.cn/simple/

  • 6
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值