离散数学 (II) 习题 11

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


1、G = ⟨a⟩ 是一个 15 阶循环群。请写出 G 的所有生成元和所有子群。

解答:
G的生成元:a1, a2, a4, a7, a8, a11, a13, a14
G的子群:
15的正因子是1,3,5,15,因此G的子群是:
15阶子群:⟨a⟩=G
5阶子群:⟨a3⟩= {a3, a6, a9, a12, a15}
3阶子群:⟨a5⟩= {a5, a10, a15}
1阶子群:⟨a15⟩= {1}

2、考虑群 G 的一个子群 H,请证明 H 在 G 中的右陪集中,只有一个右陪集是 G 的子群。

解答:
设a ∈ G,则Ha= {ha | h∈ H} ,如果Ha是子群,则单位元e属于Ha,即存在H中的元h,e=ha, a=h-1,H是子群,故a也属于H;于是对任意H中的元h有ha属于H,即Ha包含于H,对任意H中元h,h=aa-1h,由于a-1h属于H,H包含于Ha,故Ha=H。

3、考虑有限群 G 和它的子群 H,|G| = mk,|H| = m, m 和 k 均为正整数。请证明,对于任意的 a ∈ G,都存在正整数 n,1 ≤ n ≤ k,使得 an ∈ H。

解答:
由拉格朗日定理:|G|=|H| · [G:H]
且|G| = mk,|H| = m, [G:H] =k
任意的 a ∈ G, 是G的子群,的阶与|a|=k相等,所以|a|是n的因子
所以an=e,因为H为G的子群,所以e∈ H,所以 an ∈ H

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_happy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值