miniconda创建python3.9虚拟环境配置pytorch(本文主要针对在安装过程中会踩的坑以及miniconda中的配置代码)(更改版,新增操作过程--python3.8配置)

目录

操作过程--python3.9,pytorch1.9.0【该版本遇到tensorflow问题没有解决办法,就转而下载了--python3.8,pytorch1.7.1,CUDA保持不变】

操作过程--python3.8,pytorch1.7.1【该版本解决了tensorflow问题,遇到tensorflow用这个,安装tensorflow的同时会更新numpy版本,此时pandas版本在运行代码时会与numpy产生冲突,所有就需要根据numpy版本找到适合pandas的版本(一般是降低版本)】

 

操作过程Anaconda--python3.9,pytorch1.10.0【不要安装 TensorFlow】

经过上述三个操作过程的安装,发现TensorFlow容易 与numpy和pandas发生版本冲突,安装tensorflow的同时会更新numpy版本,此时pandas版本在运行代码时会与numpy产生冲突,所有就需要根据numpy版本找到适合pandas的版本(一般是降低版本)。

另外,上述第三个操作过程是本人又下载了Anaconda操作的,以下问题内容的解决方法是参考上述第一个操作过程,对其他版本相同问题也可参考。

修复 NumPy 版本冲突

查看所有环境列表:

验证Pytorch

未安装CUDA时有的NVIDIA,不能删

电脑的CUDA版本

降低Pillow版本解决DLL加载失败问题//解决“DLL load failed while importing _imaging 找不到指定的模块”错误

失败过程

解决办法:

操作步骤

检测代码

清理缓存

删除虚拟环境

退出python命令


需要先下载CUDA(需要选对版本,可看下面的【电脑的CUDA版本】),此处不再详述

需提前下载miniconda,下载过程不再说

本人电脑支持CUDA10.2

操作过程--python3.9,pytorch1.9.0【该版本遇到tensorflow问题没有解决办法,就转而下载了--python3.8,pytorch1.7.1,CUDA保持不变

conda --version
#创建虚拟环境
conda create -n pytorch python=3.9
conda info --envs
#激活
conda activate pytorch

#修复 NumPy 版本冲突,再进行下一步(不修复会在验证环节import torch这句代码出错)
conda install numpy=1.23.5 -c conda-forge

#配置pytorch
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 -c pytorch

#DLL 加载失败问题解决(看下面详解)
pip install pillow==8.3.1 --force-reinstall

验证是否安装成功
import torch    # 如正常则静默
a = torch.Tensor([1.])    # 如正常则静默
a.cuda()    # 如正常则返回"tensor([ 1.], device='cuda:0')"
from torch.backends import cudnn # 如正常则静默
cudnn.is_acceptable(a.cuda())    # 如正常则返回 "True"

操作过程--python3.8,pytorch1.7.1【该版本解决了tensorflow问题,遇到tensorflow用这个,安装tensorflow的同时会更新numpy版本,此时pandas版本在运行代码时会与numpy产生冲突,所有就需要根据numpy版本找到适合pandas的版本(一般是降低版本)】

conda --version
#创建虚拟环境
conda create -n pytorch171 python=3.8
conda info --envs
#激活
conda activate pytorch171

#配置pytorch
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -c pytorch

#NumPy:可以选用 1.19.5 版本,它能和 PyTorch 1.7.1 兼容
conda install numpy==1.19.5

#通过conda安装失败,你可以尝试使用pip来安装tensorflow 2.4.0
pip install tensorflow==2.4.0

#通过pip来安装指定版本的 Pillow8.3.1【记得添加系统环境变量 】
pip install pillow==8.3.1 --force-reinstall

#根据numpy版本找到适合pandas的版本
conda install pandas==1.2.4

验证是否安装成功
import torch    # 如正常则静默
a = torch.Tensor([1.])    # 如正常则静默
a.cuda()    # 如正常则返回"tensor([ 1.], device='cuda:0')"
from torch.backends import cudnn # 如正常则静默
cudnn.is_acceptable(a.cuda())    # 如正常则返回 "True"

操作过程Anaconda--python3.9,pytorch1.10.0【不要安装 TensorFlow】

#) 创建并激活虚拟环境
conda create -n pytorch python=3.9
conda activate pytorch

#安装 PyTorch 和相关包
# 使用 conda 安装 PyTorch + CUDA 10.2
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=10.2 -c pytorch

试试下面这个版本
conda install numpy=1.23.5 -c conda-forge

# 修复 Pillow 版本
pip install pillow==8.3.1 --force-reinstall

    
import torch
print(torch.__version__)         
print(torch.cuda.is_available())  
print(torch.version.cuda)        

from PIL import Image
print(Image.__version__)

经过上述三个操作过程的安装,发现TensorFlow容易 与numpy和pandas发生版本冲突,安装tensorflow的同时会更新numpy版本,此时pandas版本在运行代码时会与numpy产生冲突,所有就需要根据numpy版本找到适合pandas的版本(一般是降低版本)。

另外,上述第三个操作过程是本人又下载了Anaconda操作的,以下问题内容的解决方法是参考上述第一个操作过程,对其他版本相同问题也可参考。

修复 NumPy 版本冲突

  1. 降级 NumPy 到 1.x 版本
    在激活的 pytorch 环境中执行:

conda install numpy=1.23.5 -c conda-forge
  • 选择 1.23.5 是因为它是 PyTorch 1.9 兼容的稳定版本。

  • 如果提示依赖冲突,直接允许 Conda 解决冲突。

  • 验证 NumPy 版本

conda list numpy

输出应为:

numpy                     1.23.5          py39h7a0a035_0    conda-forge

查看所有环境列表:

conda env list

验证Pytorch

进入你的虚拟环境,输入conda list:

conda list

如果有Pytorch说明安装成功:

未安装CUDA时有的NVIDIA,不能删

电脑的CUDA版本

在cmd中运行nvidia-smi

降低Pillow版本解决DLL加载失败问题//解决“DLL load failed while importing _imaging 找不到指定的模块”错误

失败过程

"""
第1个方法--失败
"""
# 完全重建环境(耗时约5-10分钟)
conda create -n pytorch python=3.9 pytorch=1.9.0 torchvision=0.10.0 torchaudio=0.9.0 cudatoolkit=10.2 -c pytorch -c conda-forge
conda activate pytorch
conda install -c conda-forge pillow=8.4.0

"""
第二个方法--失败
"""
# 创建新环境(使用 conda-forge 通道)
conda create -n pytorch python=3.9 pytorch=1.9.0 torchvision=0.10.0 torchaudio=0.9.0 cudatoolkit=10.2 -c conda-forge -c pytorch

# 激活环境
conda activate pytorch

# 安装 Pillow(推荐最新版)
conda install -c conda-forge pillow

解决办法:

原因:DLL 加载失败可能是因为 Python 无法找到 _imaging.pyd 的路径

  1. 检查路径下是否存在 

    • 例如:D:\Miniconda\envs\pytorch\Lib\site-packages\PIL\_imaging.pyd

  2. 如果文件缺失,重新安装 Pillow。

操作步骤

  1. 找到 _imaging.pyd 的路径D:\Miniconda\envs\pytorch\Lib\site-packages\PIL\_imaging.pyd

  2. 将该路径添加到系统环境变量 

    • 右键 此电脑 → 属性 → 高级系统设置 → 环境变量 → 系统变量 → PATH → 编辑 → 新建 → 粘贴路径。

  3. 在miniconda上运行pip install pillow==8.3.1 --force-reinstall

pip install pillow==8.3.1 --force-reinstall

检测代码

import torch
print(torch.__version__)          # 应输出 1.9.0+cu102
print(torch.cuda.is_available())  # 应输出 True
print(torch.version.cuda)         # 应输出 10.2

from PIL import Image
print(Image.__version__)

  1. 重启 PyCharm 生效。

清理缓存

conda clean --all

删除虚拟环境

conda remove -n pytorch --all

退出python命令

exit()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值