LangChain 之 Memory

前言

LangChain为LLM聊天程序提供了记忆组件,以便我们将对话历史中的信息发送给LLM,更好地为用户提供上下文。本文,我们就来一起学习下LangChain是如何使用Memory组件来打理对话历史中的信息的。记忆组件因何而来?因为LLM不再简单的像条鱼,只有七秒记忆, 随着token上限的不断提升,我们可以将多次对话聊天信息和LLM返回,做为prompt的增量,交给LLM, 让LLM更懂我们,更好的完成工作。

Memory 交互

记忆组件就好像银行,我们可以将信息存(写)入,也可以从它里面取(读)出。另一方面会取记忆组件的信息用以增强前者。

所以,在每次与LLM的交互中,链会与记忆组件交互两次:

  • 用户完成输入后,在提交给LLM前,链从记组件读取历史信息,增强用户输入。
  • LLM返回结果后,链又会将当前用户的输入和输出写入到记忆组件,更新对话历史。

Memeory 组件类型

LangChain提供了ConversationBufferMemoryConversationBufferWindowMemoryConversationSummaryMemory三种基本记忆组件类型来完成记忆工作。

  • ConversationBufferMemory

ConversationBufferMemoryLangChain记忆组件中的劳模,为我们记录与LLM的对话历史信息。

我们要写入记忆组件的除了用户输入,记住还有模型输出。

# 引入ConversationBufferMemory 类
from langchain.memory import ConversationBufferMemory
# 实例化memory组件
memory = ConversationBufferMemory()
# save_context 方法存储对话及LLM的输出
memory.save_context({"input": "Hi, LangChain!"}, {"output": "Hey!"})
print(memory)

从下面的打印结果,我们可以看到LangChainMemory组件内部。HumanMessage代表用户输入,AIMessage代表LLM返回。

chat_memory=ChatMessageHistory(messages=[HumanMessage(content='Hi, LangChain!', additional_kwargs={}, example=False), AIMessage(content='Hey!', additional_kwargs={}, example=False)]) output_key=None input_key=None return_messages=False human_prefix='Human' ai_prefix='AI' memory_key='history'

那么,我们如何去获取消息数据呢?看下面的代码:

memory.chat_memory.messages

打印结果如下,以数组的形式存入着消息对象。

[HumanMessage(content='Hi, LangChain!', additional_kwargs={}, example=False), AIMessage(content='Hey!', additional_kwargs={}, example=False)]

memory对象上还有一个load_memory_variables方法,会将我们的对话历史生成文本,而不是数组。这些消息之间以\n的形式隔开。

memory.load_memory_variables({})

输出结果是:

{'history': 'Human: Hi, LangChain!\nAI: Hey!'}

用了一下, 感觉ConversationBufferMemory挺简单的,适用于交互回合少,input和output字符量不大的情况。当随着messages数组的增大,我们知道,不管是memory.chat_memory.messages还是load_memory_variables都会导致增强后的提示词tokens超过LLM的上下文限制,导致调用LLM失败。那么,接下来,我们看下Memory组件还为我们提供了哪些杀手锏。

  • ConversationBufferWindowMemory

比上面的类型,多了一个window。ConversationBufferWindowMemory更好之处,在于可以方便的管理最近的K个交互。这让我们想到了滑动窗口机制,即规避了tokens的超载,同时又保证了上下文的有效性。省得开发者自己管理。所以,这里的window意思就是滑动窗口。

memory = ConversationBufferWindowMemory( k=1)
memory.save_context({"input": "Hi, LangChain!"}, {"output": "Hey!"})
memory.save_context({"input": "Where are you?"}, {"output": "By your side"})

我们将k设置为1, 所以,总管在上面的代码中调用了save_context两次,Memory组件只会存一次对话信息。

我们调用load_memory_variables方法来看下结果:

{'history': 'Human: Hi, LangChain!\nAI: Hey!\nHuman: Where are you?\nAI: By your side'}

果然,Memory组件只记住了最后一次对话。可见,LangChain的记忆组件,通过滑动窗口方便地帮助开发者完成指定数量(K)的对话信息。

  • ConversationSummaryMemory

ConversationSummaryMemory比较复杂了,这是为了解决tokens大小限制,在滑动窗口外的另一种方案。熟悉Embeding的同学应该会想到,当与LLM的对话次数越来越多,我们可以将load_memory_variables里的文本embedding后,再增强用户对话,这样也可以解决大小限制问题。ConversationBufferWindowMemory滑动窗口的K次截取,或多或少,还是会带来一些对话上下文的缺失,影响LLM与用户的交流。而ConversationSummaryMemory就好像看完一本书后,会写一篇总结,里面有多次会话的大概。这样,我们就不需要爱逐字逐句的把消息放入提示词占用太多Token, 而是先对历史进行总结,生成摘要,再交给prompt。

from langchain.memory import ConversationSummaryMemory
from langchain.llms import OpenAI

memory = ConversationSummaryMemory(llm=OpenAI(temperature=0, openai_api_key="您的有效openai api key"))
memory.save_context({"input": "Hi, LangChain!"}, {"output": "Hey!"})
memory.save_context({"input": "How to start with Next.js development?"}, {"output": "You can get started with its official developer guide."})
memory.save_context({"input": "Show me the link of the guide."}, {"output": "I'm looking for you now. Please stand by!"})

memory.load_memory_variables({})



输出是:

{'history': '\nThe human greets the AI, LangChain, to which the AI responds with a friendly "Hey!" The human then asks how to start with Next.js development, to which the AI responds with instructions to use the official developer guide, and provides a link when asked.'}


现在,记忆内容不再是数组,而是每次都会更新多次聊天的summary。有效地防止了多次会话带来的tokens开销,特别是对话次数比较大的情况。

总结

  • 学习了ConversationBufferMemory类,了解Memory组件的save_contextchat_memory.messagesload_memory_variables方法
  • 围绕多次对话,为丰富聊天上下文带来的tokens开销增速快的问题,ConversationBufferWindowMemory使用滑动窗口思路,保存最近K次对话解决了此问题; ConversationSummaryMemory使用LLM的summarization能力也解决了,赞!

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

  • 7
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值