LLM大模型转行:AI大模型开发入门——转行实战攻略与学习路径解析

前言

转行AI大模型开发难吗?怎么学才能找到工作?这应该是所有新人都会面临的问题,所以我结合自己的经历,做了一些总结和学习方法,希望能对大家有所帮助。

1、AI大模型开发基础理论知识:

AI大模型开发理论知识是开展工作的理论依据和支撑,是开发很重要的阶段必须掌握的技能。

  • 机器学习基本概念:理解机器学习的基本原理和分类,如监督学习、无监督学习和强化学习等。
  • 深度学习框架:熟悉常见的深度学习框架,如TensorFlow、PyTorch等。
  • 神经网络原理:了解神经网络的基本结构和工作原理,包括前向传播和反向传播等。
  • 大模型训练技巧:掌握大规模模型的训练技巧,如迁移学习、分布式训练等。

2、编程语言功底——Python

Python是AI大模型开发的主要编程语言,对于开发者来说,掌握Python是基本要求。

  • Python基础:Python语言特点、运行环境、基本语法、代码风格、示例程序
  • 数据结构:数字、字符串、列表、元组、字典、集合等
  • 程序控制:顺序结构、循环结构、判断结构、异常处理等
  • 函数:定义函数、函数的参数、返回值、变量作用域、匿名函数、常用内置函数
  • 模块和库:模块和包、import关键字、常用标准库、常用第三方库、包管理工具pip
  • 面向对象:面向对象起源和优势、面向对象的特性类和对象的联系、对象的特殊方法
  • 并发编程:多进程、多线程、协程、线程池、同步控制、线程通信、分布式、猴子补丁、 async语法、生成器
  • 网络编程:socket编程基础、TCP服务端和客户端、并行请求处理、HTTP服务端和客户端

3、数据处理和机器学习库

在AI大模型开发中,数据处理和机器学习库是不可或缺的工具。

  • 数据预处理:数据清洗、数据标准化、数据归一化等
  • 数据可视化:使用matplotlib、seaborn等库进行数据可视化
  • 机器学习库:熟悉scikit-learn、pandas等机器学习库的使用

4、深度学习框架

深度学习框架是进行AI大模型开发的核心工具。

  • TensorFlow:了解TensorFlow的基本概念和架构,掌握常用API,如tf.data、tf.keras等
  • PyTorch:了解PyTorch的基本概念和架构,掌握常用API,如torch.nn、torch.optim等

5、AI大模型训练和部署

AI大模型训练和部署是将模型应用于实际场景的关键步骤。

  • 模型训练:掌握模型的训练流程,包括数据准备、模型构建、损失函数选择、优化器选择等
  • 模型评估:了解模型的评估指标,如准确率、召回率、F1值等
  • 模型部署:了解模型的部署流程,包括模型转换、模型优化、模型服务等

6、AI大模型应用场景

了解AI大模型在不同领域的应用场景,如自然语言处理、计算机视觉、推荐系统等。

  • 自然语言处理:了解NLP的基本任务,如文本分类、命名实体识别、机器翻译等
  • 计算机视觉:了解CV的基本任务,如图像分类、目标检测、图像分割等
  • 推荐系统:了解推荐系统的基本原理和常用算法,如协同过滤、矩阵分解等

7、持续学习和实践

AI大模型开发是一个快速发展的领域,需要持续学习和实践。

  • 参与开源项目:参与开源项目,了解实际开发流程和团队合作

  • 阅读论文和博客:阅读最新的论文和博客,了解前沿技术和最佳实践

  • 实践项目:实践项目,将理论知识应用到实际中,提高解决问题的能力

现在各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值