使用LLM进行股价预测(附代码),当我用大模型做股票预测,已经对你们降维打击了

使用LLM进行股价预测(附代码)

注意

  • 代码是完整的,但是需要 https://github.com/wxy2ab/akinterpreter 才能完整运行

利用 Python 和 AkShare 进行股票数据分析与预测:以中远海控为例

在本文中,我们将使用 Python 的 akshare 库获取中远海控(股票代码:601919.SH)2024 年的日线股票数据,并结合机器学习模型进行股价预测。接着,我们会可视化历史数据与预测结果,并生成一份简短的市场分析报告。整个过程涵盖了数据获取、处理、预测、可视化和分析等多个环节。

1. 获取中远海控2024年日线股票数据

首先,我们利用 akshare 库中的 stock_zh_a_daily 函数来获取中远海控股票的日线数据。

import akshare as ak   import datetime      # 获取今天日期   today = datetime.date.today()      # 将日期转换成 yyyyMMdd 格式   end_date = today.strftime("%Y%m%d")      # 使用 stock_zh_a_daily 函数获取中远海控2024年日线股票数据   cosco_daily_data_2024 = ak.stock_zh_a_daily(symbol="601919.SH", start_date="20240101", end_date=end_date)      # 打印返回的数据   print(cosco_daily_data_2024)   

在这段代码中,我们通过 ak.stock_zh_a_daily 函数获取了从 2024 年 1 月 1 日到今天的中远海控股票数据,并将其打印出来进行检查。

2. 数据预处理与预测

我们将获取的数据进行一些预处理,确保数据格式适合机器学习模型的输入。然后,我们使用机器学习模型(假设通过某个 llm_client 客户端)进行未来 5 天股价的预测。

2.1 数据处理函数

这里定义了两个函数,一个用于处理输入数据,另一个用于处理模型预测结果。

import pandas as pd   import re      # 准备输入数据   input_data = cosco_daily_data_2024[['date', 'close']].set_index('date')      # 定义数据处理函数   def data_processor(data):       return data.asfreq('D').fillna(method='ffill').iloc[-30:]  # 使用最近30天的数据      # 定义响应处理函数   def response_processor(response, num_of_predict):       # 使用正则表达式提取预测结果中的数字       numbers = re.findall(r'\d+\.\d+', response)       predictions = [float(num) for num in numbers[-num_of_predict:]]       return pd.Series(predictions, name='close', index=pd.date_range(start=input_data.index[-1] + pd.Timedelta(days=1), periods=num_of_predict))   
  • data_processor 函数:将数据处理为按日频率,填充缺失值,并返回最近 30 天的数据。

  • response_processor 函数:处理模型的预测结果,提取出预测的股价数据,并将其转换为 Pandas Series 对象。

2.2 进行预测

接下来,我们使用 llm_client 进行预测,假设该客户端能够接收历史数据并返回预测结果。

# 使用llm_client进行预测   predictions = llm_client.predict(input_data, num_of_predict=5, data_processor=data_processor, response_processor=response_processor)   

在这一步,我们将处理过的 input_data 传递给 llm_client,并设置预测天数为 5 天。预测结果通过 response_processor 处理,转换为 Pandas Series

3. 数据可视化

我们使用 matplotlibseaborn 库来绘制中远海控的历史股价和预测股价曲线。在此之前,我们还需要确保字体设置正确,以支持中文显示。

3.1 配置中文字体

import os   from matplotlib import font_manager      # 设置中文字体   def configure_matplotlib_for_chinese():       import platform       system = platform.system()       if system == 'Windows':           font_name = 'SimHei'       elif system == 'Darwin':           font_name = 'STHeiti'       else:  # For Linux           font_path = '/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc'           if os.path.exists(font_path):               font_manager.fontManager.addfont(font_path)               font_name = font_manager.FontProperties(fname=font_path).get_name()           else:               raise FileNotFoundError(f"Font file not found: {font_path}")              # Set the font properties       plt.rcParams['font.sans-serif'] = [font_name]       plt.rcParams['font.family'] = 'sans-serif'       plt.rcParams['axes.unicode_minus'] = False      # 运行配置函数   configure_matplotlib_for_chinese()   

为了在可视化图表中正确显示中文,我们根据不同的操作系统设置了合适的中文字体。对于 Windows 和 macOS,分别使用了系统自带的字体;对于 Linux,则使用了 wqy-zenhei 字体。

3.2 绘制图表

import matplotlib.pyplot as plt   import uuid      # 访问之前步骤的数据   historical_data = cosco_daily_data_2024   prediction_data = predictions      # 合并历史数据和预测数据   historical_data['date'] = pd.to_datetime(historical_data['date'])   historical_data.set_index('date', inplace=True)   combined_data = pd.concat([historical_data['close'], prediction_data['close']])      # 绘制图表   plt.figure(figsize=(12, 6))   plt.plot(historical_data.index, historical_data['close'], label='历史数据')   plt.plot(prediction_data.index, prediction_data['close'], color='red', label='预测数据')   plt.title('中远海控股价历史数据和预测')   plt.xlabel('日期')   plt.ylabel('收盘价')   plt.legend()   plt.grid(True)      # 保存图表   file_name = f"output/{uuid.uuid4()}.png"   plt.savefig(file_name)   plt.close()   

在这段代码中,我们将历史股价与预测股价合并,并绘制出两条曲线。historical_data 显示历史的收盘价曲线,prediction_data 则用红色表示未来 5 天的预测股价。图表保存为 PNG 格式,并保存在 output 文件夹中。

4. 统计数据与市场分析

绘制图表后,我们还可以计算一些统计数据,比如股价变化率,并生成简短的市场分析。我们使用 LLM(大语言模型)来生成对未来股价的分析和投资建议。

4.1 计算统计数据

# 计算一些统计数据   last_historical_price = historical_data['close'].iloc[-1]   first_prediction_price = prediction_data['close'].iloc[0]   prediction_change = (prediction_data['close'].iloc[-1] - first_prediction_price) / first_prediction_price * 100   

这里我们计算了:

  • last_historical_price:最后一个历史数据点的收盘价。

  • first_prediction_price:预测的第一天收盘价。

  • prediction_change:预测期间股价的变化率。

4.2 使用 LLM 进行市场分析

# 使用LLM API进行分析   llm_client = llm_factory.get_instance()   prompt = f"根据以下数据分析中远海控未来5天的股价趋势:最后历史价格 {last_historical_price:.2f},预测5天后价格 {prediction_data['close'].iloc[-1]:.2f},预测期间变化率 {prediction_change:.2f}%。请给出简短的市场分析和投资建议。"   response = llm_client.one_chat(prompt)   

在这段代码中,我们构建了一个包含历史和预测数据的提示词,并通过 llm_client 发送给 LLM 模型,请求对未来 5 天的股价趋势进行分析。

4.3 生成最终报告

# 准备返回值   results = []   results.append(f"![中远海控股价历史数据和预测图表]({file_name})")   results.append("主要发现:")   results.append(f"1. 最后一个历史数据点的收盘价为 {last_historical_price:.2f}")   results.append(f"2. 预测的第一天收盘价为 {first_prediction_price:.2f}")   results.append(f"3. 预测期间的价格变化率为 {prediction_change:.2f}%")   results.append(f"4. 预测显示未来5天的股价呈现{('上升' if prediction_change > 0 else '下降')}趋势")   results.append("5. LLM分析结果:")   results.append(response)      # 将结果保存到 analysis_result 变量   analysis_result = "\n".join(results)   

最终,我们将所有的结果整合到 analysis_result 中,这包括:

  1. 图表文件的引用。

  2. 主要发现,包括历史收盘价、预测收盘价和价格变化率。

  3. LLM 生成的市场分析。

5. 总结

本项目演示了如何使用 Python 进行股票数据的获取、处理、预测与可视化。通过 akshare 获取数据,结合机器学习模型进行预测,再借助 matplotlib 绘制图表,最后生成简短的市场分析。

完整代码

import akshare as ak   import datetime      # 获取中远海控2024年的日线股票数据   # 中远海控的股票代码是 "601919.SH"      # 使用stock_zh_a_daily函数获取数据   # 获取今天的日期   today = datetime.date.today()      # 将日期转换成yyyyMMdd格式   end_date = today.strftime("%Y%m%d")      # 使用stock_zh_a_daily函数获取数据   cosco_daily_data_2024 = ak.stock_zh_a_daily(symbol=symbol, start_date="20240101", end_date=end_date)      # 直接打印返回的数据,不做任何处理   print(cosco_daily_data_2024)      import pandas as pd   import re      # 准备输入数据   input_data = cosco_daily_data_2024[['date', 'close']].set_index('date')      # 定义数据处理函数   def data_processor(data):       return data.asfreq('D').fillna(method='ffill').iloc[-30:]  # 使用最近30天的数据      # 定义响应处理函数   def response_processor(response, num_of_predict):       # 使用正则表达式提取数字       numbers = re.findall(r'\d+\.\d+', response)       predictions = [float(num) for num in numbers[-num_of_predict:]]       return pd.Series(predictions, name='close', index=pd.date_range(start=input_data.index[-1] + pd.Timedelta(days=1), periods=num_of_predict))      # 使用llm_client进行预测   predictions = llm_client.predict(input_data, num_of_predict=5, data_processor=data_processor, response_processor=response_processor)      import pandas as pd   import matplotlib.pyplot as plt   import seaborn as sns   import uuid   import os   from matplotlib import font_manager      # 确保output文件夹存在   os.makedirs('output', exist_ok=True)      # 设置中文字体   def configure_matplotlib_for_chinese():       import platform       system = platform.system()       if system == 'Windows':           font_name = 'SimHei'       elif system == 'Darwin':           font_name = 'STHeiti'       else:  # For Linux           font_path = '/usr/share/fonts/truetype/wqy/wqy-zenhei.ttc'           if os.path.exists(font_path):               font_manager.fontManager.addfont(font_path)               font_name = font_manager.FontProperties(fname=font_path).get_name()           else:               raise FileNotFoundError(f"Font file not found: {font_path}")              # Set the font properties       plt.rcParams['font.sans-serif'] = [font_name]       plt.rcParams['font.family'] = 'sans-serif'       plt.rcParams['axes.unicode_minus'] = False      # 运行配置函数   configure_matplotlib_for_chinese()      # 访问之前步骤的数据   historical_data = cosco_daily_data_2024   prediction_data = predictions      # 合并历史数据和预测数据   historical_data['date'] = pd.to_datetime(historical_data['date'])   historical_data.set_index('date', inplace=True)   combined_data = pd.concat([historical_data['close'], prediction_data['close']])      # 绘制图表   plt.figure(figsize=(12, 6))   plt.plot(historical_data.index, historical_data['close'], label='历史数据')   plt.plot(prediction_data.index, prediction_data['close'], color='red', label='预测数据')   plt.title('中远海控股价历史数据和预测')   plt.xlabel('日期')   plt.ylabel('收盘价')   plt.legend()   plt.grid(True)      # 保存图表   file_name = f"output/{uuid.uuid4()}.png"   plt.savefig(file_name)   plt.close()      # 计算一些统计数据   last_historical_price = historical_data['close'].iloc[-1]   first_prediction_price = prediction_data['close'].iloc[0]   prediction_change = (prediction_data['close'].iloc[-1] - first_prediction_price) / first_prediction_price * 100      # 准备返回值   results = []   results.append(f"![中远海控股价历史数据和预测图表]({file_name})")   results.append("主要发现:")   results.append(f"1. 最后一个历史数据点的收盘价为 {last_historical_price:.2f}")   results.append(f"2. 预测的第一天收盘价为 {first_prediction_price:.2f}")   results.append(f"3. 预测期间的价格变化率为 {prediction_change:.2f}%")   results.append(f"4. 预测显示未来5天的股价呈现{('上升' if prediction_change > 0 else '下降')}趋势")      # 使用LLM API进行分析   llm_client = llm_factory.get_instance()   prompt = f"根据以下数据分析中远海控未来5天的股价趋势:最后历史价格 {last_historical_price:.2f},预测5天后价格 {prediction_data['close'].iloc[-1]:.2f},预测期间变化率 {prediction_change:.2f}%。请给出简短的市场分析和投资建议。"   response = llm_client.one_chat(prompt)      results.append("5. LLM分析结果:")   results.append(response)      # 将结果保存到analysis_result变量   analysis_result = "\n".join(results)      

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值