最近DeepSeek爆火,不仅仅是因为它开源、便宜,更重要的是它的写作能力、编码能力、搜索能力都是非常强的,并且它是我国首个开源的AI!
有人说:会使用DeepSeek就成功了一半!
哈哈,这有点过了,但确实会大大的提高开发的效率,例如前面我就写了一篇文章,利用DeepSeek开发一个全栈小程序,还小赚一笔!
[激动!用DeepSeek赚了4万,手把手分享全栈开发教程!]
今天继续给大家带来手把手的教学,将DeepSeek接入到个人微信!
本文分享的方法全部免费!全程无尿点,实战+手把手教,小白也可以学会!
掌握了本文的方法, 你也可以在微信中骚气的使用DeepSeek,建议点赞、收藏、转发,防止以后找不到。
那么DeepSeek整合到个人微信里面,能带来什么优点和方便之处呢?
DeepSeek接入个人微信示例图:
我们直接使用的是一个开源的项目,chatgpt-on-wechat (简称cow),附上github的链接:
https://github.com/zhayujie/chatgpt-on-wechat
整合deepseek接入个人微信,接入的功能也非常丰富,包含私聊群聊接入、语音识别、白名单配置等等。
大家耐心一点,跟着本文的教程一步步的,就可以完美配置!
废话不多说,我们开始搞起!
整个过程简单来说分四步:
1,从DeepSeek api官网中获取DeepSeek ApiKey;
2,安装docker
3.创建、并自定义配置cow的docker-compose.yml文件;
4.使用docker一键启动cow,扫码登录微信号;
1,获取DeepSeek ApiKey
首先我们去DeepSeek的开发平台获取秘钥,如果没有注册过的账号的先注册,点击创建API key后给它命名,即可成功获取,API KEY只有首次创建能复制,忘记了则需要销毁重建。
官网地址:
https://platform.deepseek.com/usage
但是有个头疼的问题来了:
最近DeepSeek频繁受到外网攻击,经常出现服务繁忙、网站停站等异常;如果直接访问DeepSeek api官网,就有时候会出现下面这个页面…
**解决方案:
**
如果DeepSeek官网无法访问,可以用这个AI_API高速中转站:
https://kg-api.cloud/
中转站中包含有DeepSeek的API(无论使用的是DeepSeek官方API,还是kg中转站的API,都是收费的,现在来比的话,kg的中转站里中转DeepSeek会更稳定)
使用kg中转站的api,需要注意下面配置文件的修改,一定不能填错!!
当使用官方API: apikey:复制官方的apikey API地址:https://api.deepseek.com/v1 当使用kg中转站API时: apikey:复制中转站创建的apikey API地址:https://kg-api.cloud/v1
跟到这里你已经战胜了世界上50%的人!
我们继续往下操作!
2,安装docker
如果是苹果系统的话,选择苹果芯片Apple Silicon或因特尔芯片Intel chip的安装包下载。如果是Windows系统的话,在下面的网站直接下载:
https://docs.docker.com/desktop/setup/install/windows-install/
Step1: 下载后,双击Docker.dmg
,直接拖拽到Applications
文件夹即可完成安装
Step2: 双击Docker.app
就可以启动Docker DeskTop
配置 Docker 镜像加速
国内镜像地址,我整理了很多的国内镜像地址,可以直接获取使用,我的公众号,直接回复:deepseek
修改 Docker 配置文件
先点击设置按钮,再点击此处:
测试 & 验证
打开一个命令行窗口 cmd,输入如下命令,没有报错就是安装成功了。
小孟微信:fly996868
# 查看版本
docker --version
# 下载demo镜像并启动容器
docker run hello-world
输出如下则安装成功:
小孟微信:fly996868
ludynice % docker --version
Docker version 24.0.2, build cb74dfc
ludynice % docker run hello-world
Hello from Docker!
This message shows that your installation appears to be working correctly.
To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
(arm64v8)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.
To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash
Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/
For more examples and ideas, visit:
https://docs.docker.com/get-started/
测试无误后,就能够进行后续的docker和docker compose的操作了~
跟到这里你已经战胜了70%的人!
我们继续往下!
3,插件使用(非必须)
如果需要在docker容器中修改插件配置,可通过挂载的方式完成,将 插件配置文件 重命名为 config.json
,放置于 docker-compose.yml
相同目录下,并在 docker-compose.yml
中的 chatgpt-on-we``chat
部分下添加 volumes
映射
小孟微信:fly996868
volumes:
- ./config.json:/app/plugins/config.json
插件配置的内容:
小孟微信:fly996868
# config.json文件内容示例
{
"model": "gpt-3.5-turbo", # 模型名称, 支持 gpt-3.5-turbo, gpt-4, gpt-4-turbo, wenxin, xunfei, glm-4, claude-3-haiku, moonshot
"open_ai_api_key": "YOUR API KEY", # 如果使用openAI模型则填入上面创建的 OpenAI API KEY
"open_ai_api_base": "https://api.openai.com/v1", # OpenAI接口代理地址
"proxy": "", # 代理客户端的ip和端口,国内环境开启代理的需要填写该项,如 "127.0.0.1:7890"
"single_chat_prefix": ["bot", "@bot"], # 私聊时文本需要包含该前缀才能触发机器人回复
"single_chat_reply_prefix": "[bot] ", # 私聊时自动回复的前缀,用于区分真人
"group_chat_prefix": ["@bot"], # 群聊时包含该前缀则会触发机器人回复
"group_name_white_list": ["ChatGPT测试群", "ChatGPT测试群2"], # 开启自动回复的群名称列表
"group_chat_in_one_session": ["ChatGPT测试群"], # 支持会话上下文共享的群名称
"image_create_prefix": ["画", "看", "找"], # 开启图片回复的前缀
"conversation_max_tokens": 1000, # 支持上下文记忆的最多字符数
"speech_recognition": false, # 是否开启语音识别
"group_speech_recognition": false, # 是否开启群组语音识别
"voice_reply_voice": false, # 是否使用语音回复语音
"character_desc": "你是基于大语言模型的AI智能助手,旨在回答并解决人们的任何问题,并且可以使用多种语言与人交流。", # 人格描述
# 订阅消息,公众号和企业微信channel中请填写,当被订阅时会自动回复,可使用特殊占位符。目前支持的占位符有{trigger_prefix},在程序中它会自动替换成bot的触发词。
"subscribe_msg": "感谢您的关注!\n这里是ChatGPT,可以自由对话。\n支持语音对话。\n支持图片输出,画字开头的消息将按要求创作图片。\n支持角色扮演和文字冒险等丰富插件。\n输入{trigger_prefix}#help 查看详细指令。",
"use_linkai": false, # 是否使用LinkAI接口,默认关闭,开启后可国内访问,使用知识库和MJ
"linkai_api_key": "", # LinkAI Api Key
"linkai_app_code": "" # LinkAI 应用或工作流code
}
4,创建、配置docker-compose.yml文件
在目录的任意位置执行 vim docker-compose.yml (只有mac有此),如果操作系统为window,则手动创建此文件即可:
文件内容:(注意需要替换自己的配置信息),看不懂配置没关系,配置下方有详细介绍。
小孟微信:fly996868
udynice % docker --version
Docker version 24.0.2, build cb74dfc
ludynice % docker run hello-world
Hello from Docker!
This message shows that your installation appears to be working correctly.
To
当使用kg中转站API时:
apikey:复制中转站创建的apikey
API地址:https://kg-api.cloud/v1
docker-compose.yml内容部分配置说明(下面的配置说明都是docker-compose.yml里的):
3.1 个人聊天
个人聊天中,需要以 “bot"或”@bot" 为开头的内容触发机器人,对应配置项 single_chat_prefix (如果不需要以前缀触发可以填写 “single_chat_prefix”: [“”])
机器人回复的内容会以 "[bot] " 作为前缀, 以区分真人,对应的配置项为 single_chat_reply_prefix (如果不需要前缀可以填写 “single_chat_reply_prefix”: “”)
3.2 群组聊天
群组聊天中,群名称需配置在 group_name_white_list 中才能开启群聊自动回复。如果想对所有群聊生效,可以直接填写 “group_name_white_list”: [“ALL_GROUP”]
默认只要被人 @ 就会触发机器人自动回复;另外群聊天中只要检测到以 “@bot” 开头的内容,同样会自动回复,这对应配置项 group_chat_prefix
可选配置: group_name_keyword_white_list配置项支持模糊匹配群名称,group_chat_keyword配置项则支持模糊匹配群消息内容,用法与上述两个配置项相同
**group_chat_in_one_session:**使群聊共享一个会话上下文,配置 [“ALL_GROUP”] 则作用于所有群聊
只要配置好了,后续的操作步骤都是一样的,只是接入DeepSeek后的效果不同,本文仅演示私聊接入DeepSeek的配置,其他单独配置小伙伴们可以自行接入去尝试~
当然前面的话,我也免费分享了如何将DeepSeek接入到IDEA,开发效率真翻了好几倍!
如果你是开发者,建议也安装下!
[手把手教你将DeepSeek集成到IDEA!开发效率翻了5倍!]
5,部署cow应用
(即运行上面的docker-compose.yml内容),弹出二维码,让需接入DeepSeek的微信去扫码登录
文件保存后,在上面创建的docker-compose.yml文件同级目录下打开终端窗口:
打开窗口后输入pwd,只要现在操作的命令行是当前docker-compose.yml的路径即可:(这里是要你们存放docker-compose.yml文件的路径)
在该路径下,根据docker compose版本去执行yml文件部署服务:
小孟微信:fly996868
# 查看docker compose版本
docker compose version
# 在docker-compose.yml文件所在目录下,执行:
# 如docker compose版本为v2,执行
docker-compose up -d
# 如docker compose版本为v3,执行
docker compose up -d
部署执行过程,整个image总共有1g多,下载稍微有点慢,静候即可:
当出现下面started的日志,就代表部署完成了:
6,获取微信登录二维码
执行下述命令:
#获取微信登录二维码
docker logs -f chatgpt-on-wechat
或者直接在上面安装的docker desktop面板上看:
如果你跟到这里,到这里DeepSeek接入个人微信就配置完毕了~
你已经超越99%的人啦!你就是那个最帅的人!
码字不易,开发加文章弄了好几天,文章**点赞、爱心、转发 ,支持下,全部免费,防止找不到该文,**我会继续更新详细DeepSeek的各种牛b的教程!
未来AI一定会掀翻各行各业,程序员也一样,所以我们要成为全栈工程师,成为AI替代不了的技术。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓