“ “扔炸弹”、“AI双星”、“再革OpenAI的命”…这场狂欢似乎就是要再次复制deepseek式的成功,震耳欲聋的夸耀从昨晚又开始了。但这次,可能真的不一样。”
这是“练就基本功”的第46篇原创
01
—
一夜暴富的邀请码:AI圈又开始了新一轮"炒房"
3月6日凌晨,我的朋友圈彻底沦陷了。
一款叫Manus的AI产品横空出世,瞬间刷爆了各大社交平台。二手平台上,一个邀请码被炒到了9万元。没错,就是9万,你没看错,比一辆新车还贵。
我第一反应是:又来一个割韭菜的。
但当我通过朋友的内测账号体验后,我不得不承认,这次可能真的不一样。
02
—
从"你得教我做事"到"我全都会":AI终于学会了自己干活
你有没有这种感觉?
用ChatGPT就像带了个实习生,啥都得手把手教。“你先去查这个”、“然后你再做那个”、“最后你帮我整理一下”…累得跟自己干了似的。
而Manus不一样,它就像一个经验丰富的全能员工,你只需要说"帮我做XX",它就能从头到尾把事情办妥。
这不是吹牛,是真的有这么大区别。
Manus的核心突破:真·通用智能体
Manus的名字来自拉丁语"Mens et Manus"(心智与手),意思是知识必须通过行动才有价值。
这名字起得贼有内涵,因为它真的做到了"手脑并用"。
传统AI只会"想",Manus既会"想"也会"做"。它能独立思考、规划并执行复杂任务,直接交付完整成果。
简单说,它不是工具,而是员工。
技术实力:GAIA测试中吊打OpenAI
在GAIA基准测试(评估AI解决真实世界问题的能力)中,Manus在所有难度级别上都创下了新纪录,远超OpenAI的DeepResearch。
GAIA测试成绩:
这就像高考状元和普通二本生的区别,不是一个量级的。
创始团队:从校园创业到被收购,再到AI独角兽
Manus的创始人肖弘是90后华科毕业生,创业经历堪称开挂。
大学时期开发校园版微信漂流瓶,3天内实现4万条互动量。
2016年,他的"壹伴助手"在黑客松比赛中夺冠,获得真格基金百万投资。
2019年,团队预判企业微信生态机遇,转型SCRM工具"微伴助手",覆盖60+行业、40万企业用户,最终被独角兽收购。
这哥们儿的履历,看得我怀疑人生。我大学时还在为挂科发愁,人家已经拿到百万投资了。
03
—
实测:Manus到底能干啥?我亲自体验了一把
光说不练假把式。我用朋友的账号亲自测了几个案例,结果惊到我下巴都要掉了。
核心能力:自主性 + 通用性
Manus的核心能力可以概括为两点:自主性和通用性。
自主性就是它能独立完成从任务规划到执行的全过程。它采用Multiple Agent架构,运行在独立虚拟机中,可以调用各类大模型API和众多插件——编写和执行代码、浏览网页、操作应用等,直接交付完整成果。
通用性则是它能处理多种复杂任务,从行业研究、数据分析到编程、文档生成等。无论是筛选简历、分析股票还是设计网页,Manus都能胜任。
简单说,就是啥都会,还不用你教。
实测案例1:找最便宜的橡胶垫
我让Manus帮我找市场上最便宜的橡胶垫。
一般AI可能会给你列个清单就完事了。但Manus直接变身比价专家+数据分析师+网页开发者。
它先搜索比较了不同零售商的价格,然后将结果分类为"最佳总体价值"、“最佳预算选项"和"最佳高端选项”。
最后,它发现Tractor Supply的厚橡胶马槽垫(4’x6’、3/4"厚)以53美元(每平方英尺2.21美元)提供了最佳的整体价值。
更绝的是,它还创建了一个交互式仪表板,用于可视化价格比较数据,并部署到了一个公开URL。
这就像你不仅雇了个采购员,还顺带雇了个数据分析师和网页开发,一次性解决了你的所有需求。
输出结果:
实测案例2:收集YC公司名单
我让Manus从YC官网收集W25B2B企业信息。
它先访问YC官网,应用W25批次和B2B行业过滤器,筛选出99家公司。然后开始系统收集每家公司的详细信息,包括公司名称、位置、描述和子类别等。
在收集过程中,它还会定期报告进度:“已记录24家公司”、"已记录45家公司"等。最终,它整理了94家W25B2B企业的详细信息,并做成了一个漂亮的表格。
这活要是让我自己干,得花一整天,还得忍受复制粘贴的无聊。Manus几十分钟就搞定了,而且一点错都没有。
输出部分结果:
实测案例3:一键生成专业股票分析报告
我让Manus分析特斯拉股票,它直接变身华尔街分析师。
它不仅收集了公司概况、关键指标和业绩数据,还分析了市场情绪、技术指标和竞争对手对比,最终生成了一份包含图表和投资建议的完整报告。
这报告质量,说是券商研究所出品都有人信。
输出全部结果:
实测案例4:调查20家CRM公司的品牌故事
我让Manus收集20家CRM公司的口号和品牌故事。
它不仅完成了任务,还提供了从Salesforce到HubSpot、Zoho等20家领先CRM公司的详细报告。
比如,Salesforce的口号是"We’re Salesforce, the #1 AI CRM",品牌故事围绕着作为SaaS CRM先驱的身份。而HubSpot的口号是"Grow Better",品牌故事强调通过入站营销帮助公司实现高质量增长。
它还分析了每家公司的市场定位和差异化策略,堪比一份专业的市场调研报告。
输出部分结果:
04
—
揭秘Manus的"三脑系统":为什么它这么聪明?
人类大脑式的多Agent协同架构
Manus采用了"三脑系统"的多Agent协同架构,类似于人类大脑的前额叶(规划)、运动皮层(执行)和丘脑(验证)的分工协作。
具体来说,Manus包含三种不同类型的Agent:
-
规划型Agent:负责任务拆解,将复杂任务分解为可执行的步骤
-
执行型Agent:调用具体工具,执行规划好的任务步骤
-
监控验证Agent:跟踪任务进度和debug,确保任务正确完成
这就像一个小型公司,有产品经理(规划)、工程师(执行)和QA(验证)。
“Less structure, more intelligence”:让AI自然进化
Manus团队的核心理念是"Less structure, more intelligence"(更少的结构,更多的智能)。
这意味着他们尽量减少对模型的人工控制,只做好铺垫,让AI自己发挥。
这与传统的工作流(workflow)方式不同,后者通常需要人工预设每个步骤。Manus的方法是,随着基础模型能力提升和数据增加,很多能力会自然演化出来,不需要通过workflow的方式强行教会AI。
为了实现这一目标,Manus团队给AI提供了三个关键要素:
-
Give it a computer:就像招一个员工,入职就得给他配电脑
-
Give it data access:提供数据访问权限
-
Give it training:提供必要的培训
这就像养孩子,与其事无巨细地管教,不如创造良好的环境让他自己成长。
05
—
Manus vs 其他AI工具:差距有多大?
从"回答问题"到"解决问题":与ChatGPT的本质区别
ChatGPT等对话式AI工具主要是"回答问题",而Manus则是"解决问题"。
举个例子,如果你要ChatGPT帮你分析一家公司的财报,你需要:
-
先让它告诉你需要哪些数据
-
自己去收集这些数据
-
将数据提供给ChatGPT
-
让它分析并生成报告
而Manus只需一个指令:“分析XX公司的财报”,它会自动完成从数据收集到分析报告生成的全过程。
这就像前者是顾问,后者是员工。顾问只会给你建议,员工会直接把事情做完。
超越预设流程:与Coze等编程工具的比较
Coze等工具专注于单一任务的自动化,通常需要用户预先设定工作流程。而Manus能处理多种任务,并且能自主规划工作流程。
这就像前者是按图索骥的机器人,后者是能自己思考的助手。
不止于搜索:与Perplexity等AI搜索工具的区别
传统AI搜索工具如Perplexity主要提供信息检索和整合,而Manus不仅能搜索信息,还能自主分析和生成结果,甚至能够操作虚拟环境中的应用程序。
这就像前者是图书管理员,后者是研究员。前者只会帮你找资料,后者会帮你做研究。
06
—
Manus的五大局限:它也不是万能的
尽管Manus表现出色,但在我的测试中也发现了一些局限性:
-
处理时长问题:在高级模式下,如果让它写篇文章,处理时长很久,大概30分钟-1小时。在一般模式下,例如写一个HTML页面,也需要15分钟。
-
服务器负载问题:多次出现"负载过高导致服务器出错"的情况,影响了用户体验。
-
垂直领域深度不足:在专业领域研究报告撰写时,信息来源主要来自中文聚合平台和国内期刊,缺少国外期刊和第一手资源。
-
格式交付限制:有时无法按照特定要求和格式交付,例如无法直接生成PPT,只能提供markdown格式的中间态。
-
数据边界问题:抓取一些内容平台或付费墙时,需要手动接管登录账号,AI Agent也解决不了"数据边界"的问题。
这些问题说明,Manus虽然强,但还不是全能的。就像再厉害的员工也有不擅长的领域。
07
—
未来展望:Manus会变得更强吗?
Manus目前仍处于内测阶段,每天限制10个任务。未来有望通过以下方面进一步提升:
-
提高处理效率:降低任务处理时间,提升用户体验
-
扩展专业领域能力:增强垂直领域的深度和广度
-
优化输出格式:支持更多直接可用的输出格式
-
增强数据获取能力:解决数据边界问题
-
商业化模式探索:在保证性能的同时,让价格更亲民,使普通用户也能使用
08
—
结语:AI员工时代已经开始,你准备好了吗?
Manus的出现,不是简单的技术迭代,而是一次认知革命。
过去,我们把AI当工具用,现在,AI已经可以当员工用了。
想想看,一个不用休息、不会抱怨、不需要五险一金的全能员工,每天24小时待命,能独立完成从数据收集到分析报告的全过程。这意味着什么?
这意味着,很多中间环节的工作岗位将被彻底重构。
不是说AI会替代人类,而是会替代那些"只会执行不会思考"的工作。未来,人类需要做的是提出问题和验证结果,中间的执行过程可以全部交给AI。
正如Manus团队所说:"知识不仅要在脑子里,还要能用手执行。"这正是Agent相较于AI Bot(聊天机器人)产品的本质进阶。
2025年被称为AI Agent元年,而Manus的出现,无疑是这一预言的有力佐证。
无论你是否已经体验过Manus,都应该意识到:AI代理革命已经开始,未来已来。
而你,准备好了吗?
—
最后说一句,9万块钱的邀请码是真的离谱。但如果Manus真能帮你省下一个全职员工的成本,这笔投资可能还真不亏。
不过我建议再等等,等它正式商业化后,价格肯定会亲民很多。毕竟,再牛的产品,也得有人用才行。而且,要不了两个月,字节或腾讯就会类似,甚至更棒的同类型产品会出来,尽情期待!
如果这篇文章对你有启发,希望它也能帮助到更多对AI发展感兴趣的朋友。
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓