大模型是人工智能发展的重要方向,其必要性体现在推动技术进步、促进经济发展、提升国家竞争力等多个层面。发展 大模型已成为全球共识,也是我国实现科技自立自强、建设科技强国的必然选择。 私域大模型正在重写智能化的底层语法—它不是算力的 军备竞赛,而是认知边疆的开拓征途。
AI 大模型近年来在模型规模、架构创新、算法优化、训练方法、场景应用等方面上取得了显著突破,但在实际应用中仍 面临诸多挑战:高端算力芯片成本高昂且供应受限、闭源模型私域部署困境、国产芯片生态适配难题、迫切需要高性能、高安全的国产算力 + 国产开源模型。
幻今天分享的是人工智能AI大模型行业研究报告:《私域大模型部署白皮书》,报告由超云发布。
本报告共计:59页。完整版PDF电子版报告下载方式见文末。
研究报告内容摘要如下
大模型选择概述
在模型选择中,应以业务价值为核心,优先落地能直接拉动营收或显著降本的高ROI场景(如智能客服替代人力、精准营销提升转化率),避免为“技术而技术”的无效投入;同时,需以数据安全为底线,对金融、政务等涉及敏感数据的领域强制采用私有化部署方案,通过全链路加密、权限隔离和国产化算力底座(如国产芯片+麒麟OS)实现数据不出域;此外,必须坚持成本可控原则,通过软硬协同优化压缩TCO——例如采用模型量化(FP32—INT8降低75%算力开销)、稀疏化裁剪(减少30%参数量)等技术提升推理效率,并搭配国产芯片(如海光DCU对比英伟达A100可降本40%)和动态资源调度策略,实现“性能-安全-成本”三角平衡,确保大模型投入与业务回报的长期正向循环。
行业/场景应用分析
不同场景/行业对大模型的技术需求存在显著差异,需从业务本质出发,将业务特性转化为技术指标。
行业场景、技术能力与开源模型(以 DeepSeek 为例)对应表:
选型建议
优先通过领域微调提升小模型效果,而非盲目追求大参数;
使用 MoE(混合专家)架构,动态调用多模型,平衡性能与成本。
选型建议
选择开源模型的条件:
-
数据隐私要求高(如政务、金融、医疗);
-
需深度定制模型(如融合企业内部知识库);
-
具备技术团队(至少 3-5 名算法工程师)。
选择闭源模型的条件:
-
快速上线验证业务价值;
-
无自研能力的中小型企业;
-
业务场景通用性强(如营销文案生成)。
白皮书详细探讨了私域大模型在不同行业中的应用实践。
金融行业对模型的实时性和合规性要求极高,私域大模型通过提供毫秒级的响应速度和严格的合规性保障,成功应用于智能风控、金融交易等领域。
医疗行业则对模型的精度和多模态处理能力提出了更高要求,私域大模型在肺结节CT影像分析、医疗影像诊断与辅助等方面展现出了卓越的性能,显著提升了早期肺癌的检出率并降低了误诊率。
在制造业中,私域大模型凭借其低延迟和边缘部署的优势,成功应用于工业质检与生产优化场景,提升了晶圆缺陷检测的准确率并大幅降低了质检成本。
零售业则需要处理高并发和多模态数据,私域大模型在个性化内容运营、智能安防与行为分析等方面发挥了重要作用。
幻影视界整理分享报告原文节选如下:
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓