1.工商银行:大模型技术体系布局
・工商银行体系化推动大模型企业级技术能力建设,按照 “三大支柱、1+X 范式、两全平台、全域生态” 的建设思路,建成集 “算力、算法、数据、工具、能力、安全、应用、生态” 于一体的企业级千亿金融大模型技术体系,并打造 “工银智涌” 大模型品牌,内外协同赋能,实现 “人工智能 + 金融” 新生态。
2 工商银行:面向云智融合的智算能力建设
・为了支撑人工智能技术规模化应用,满足大模型时代的算力供给需求,工商银行参考头部科技公司建设经验,结合自身实际需求开展智算能力建设。目前,工商银行已建成千卡规模国产化 AI 算力云,利用并发加载等技术,实现大模型分钟级弹性启动,具备 TB 级数据一个月内完成千亿大模型全参稳定训练的能力。
3. 工商银行:大小模型协同的算法矩阵
・以 “共享复用、资源集约、成本效益最优” 为准则,工商银行采用 “商用 + 开源” 并行路线,建成多层次、多模态、大小模型协同融合的千亿级金融大模型算法矩阵,并利用智能体框架,构建调控引擎实现不同参数、不同能力模型的统一择优调控,满足金融业务场景复杂多样化的需求。
4 工商银行:企业级金融知识工程
・工商银行从全模数据出发,建成 “世界 - 行业 - 企业 - 领域 - 任务” 五层架构知识体系,利用 AI4Data 数据智能处理技术,打造金融知识工程 “采集、清洗、管理、使用” 全链路智能化技术能力。
5 工商银行:大模型全域安全加固
・为保障大模型安全应用,需要结合业务应用加强大模型全域安全加固。工商银行建立人工智能全域守护安全能力,逐层梳理金融服务全生命周期的安全薄弱点,通过基础设施供应链安全、基模合规可靠、数据内容可信、模型价值对齐微调、服务拦截过滤、问答结果溯源等安全加固,确保人工智能应用安全可控。
6 工商银行: “1+X” 金融行业大模型应用范式
・为了让业务更好地使用大模型,工商银行打造适配金融行业的 “1+X” 工程化解决方案,其中 “1” 是指智能中枢,通过智能中枢的任务感知、决策、执行、反馈等能力实现金融复杂场景的应用。沉淀 “X” 可共享复用的范式能力,包含多模态知识检索、对话式数据分析、智能化文档编写、交互式智能搜索、陪伴式智能研发等多项金融即插即用的零代码工程化解决方案。
7 工商银行:大模型业务落地方法论
・为了确保大模型应用由简到易、规模化有序推进,工商银行提出两阶六步金融大模型应用创新方法论和 “3-1-N” 基于范式的 AI 技术规模化转换方法论:
・两阶六步方法论:运用科技业务双前移的融合创新机制,让科技人员更了解业务需求,业务部门更关注场景设计,共同完成业务全流程全流域的规划设计;
・“3-1-N” 方法论:首选相对简单、容易突破的业务领域,孵化 1 个精品标杆案例,打磨 2 个相似场景,提炼出典型端到端的大模型应用范式,进而实现全行相似的场景的推广,形成 “精品标杆场景打造 - 沉淀标准应用范式能力 - 全域规模化推广” 的最佳实践。
8 工商银行:DeepSeek 大模型部署应用(1)
・基于 “工银智涌” 大模型平台,工商银行引入 DeepSeek 系列开源模型,应用于财报分析助手、AI 财富管家、业绩考评等多个场景,提升复杂数据处理与推理能力,推动业务流程智能化;
・在网络金融对公业绩考评场景,工商银行基于 DeepSeek R1 大模型,通过 “数据自动收集、业绩智能评价、评价精准推送”,实现业绩数据一站式加工、督导评价智能化生成。相较于传统人工模式,该解决方案已面向全行 38 家一级分行推广,经业务部门估算,逐步推广至 500 余家二级分行后,每月预计节约数据统计分析及归纳整理相关工作人工成本 800 人日。DeepSeek 大模型输出了更加有针对性、准确性更高的总分行业务发展策略建议,业务采纳率达到 90%。
8 工商银行:DeepSeek 大模型部署应用(2)
・聚焦对公领域业务产品众多、营销场景复杂、基层学习时间少、知识更新速度快、不经常用则易忘等痛点,中国工商银行打造赋能对公营销人员的对公营销通平台 “天枢百问” 智能体,深度融合 DeepSeek-R1 大模型的推理与知识检索能力,构建快速、准确、全天候、可溯源的结算金融 AI 顾问,目前已正式上线;
・加载 DeepSeek 后,“天枢百问” 在精准解答用户问题的同时,进一步将思考过程可视化,清晰展示问题解决的逻辑链条,显著提升服务透明度与专业性。
9 小结
工商银行在大模型技术应用方面积极探索,成果丰硕。
在技术体系布局上,遵循 “三大支柱、1+X 范式、两全平台、全域生态” 思路,构建 “工银智涌” 企业级千亿金融大模型技术体系,涵盖算力到生态各要素。智算能力建设上,建成千卡规模国产化 AI 算力云,可实现大模型分钟级弹性启动,能在一个月内完成千亿大模型全参稳定训练。
算法层面,采用 “商用 + 开源” 路线,打造多层次、多模态、大小模型协同融合的算法矩阵,满足金融业务场景多样化需求。知识工程领域,搭建五层架构知识体系,运用 AI4Data 技术实现金融知识全链路智能化处理。安全加固方面,建立全域守护安全能力,梳理金融服务安全薄弱点并加固,保障人工智能应用安全。
应用范式上,打造 “1+X” 工程化解决方案,“1” 为智能中枢处理复杂场景,“X” 包含多模态知识检索等多项零代码方案。业务落地有两阶六步和 “3 - 1 - N” 方法论,确保应用有序推进。
DeepSeek 大模型部署成效显著,应用于财报分析、业绩考评等场景,提升数据处理和推理能力。如在网络金融对公业绩考评中,节约人工成本,提供精准策略建议;“天枢百问” 智能体融合 DeepSeek - R1 模型,精准解答问题并可视化思考过程,提升服务质量。工商银行通过一系列举措,在 “人工智能 + 金融” 领域不断开拓创新,构建新生态。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓