能被整除的数

这篇博客详细介绍了如何利用容斥原理和深度优先搜索解决数论问题,特别是关于质数因子的计数问题。通过C++代码展示了如何在给定质数集合的情况下,计算1到n之间能被这些质数整除的整数数量。同时,文章还探讨了求解乘法逆元的方法,特别是在质数模意义下的快速幂运算。
摘要由CSDN通过智能技术生成

在这里插入图片描述
题目描述
给定一个整数 nn 和 mm 个不同的质数 p1p1, p2p2,…, pmpm。
请你求出 11 ~ nn 中能被 p1p1, p2p2,…, pmpm 中的至少一个数整除的整数有多少个。

算法
容斥原理
记 11 ~ nn 所有数的集合为 AA。设性质 PiPi 为:nn 可以被质数 pipi整除。设 11 ~ nn 中满足性质 PiPi 的数所在的集合为 AiAi,集合大小记为 |Ai||Ai|。至少满足 P1P1, P2P2, …, PmPm 这些性质中至少一个性质的数所在集合显然为
A1∪A2∪…∪Am
A1∪A2∪…∪Am
,则由容斥原理,这个集合的大小为:
|A1∪A2∪…∪Am|=∑i=1m|Ai|−∑1~m 的2组合|Ai∩Aj|+∑1~m 的3组合|Ai∩Aj∩Ak|+…+(−1)m−1|A1∩A2∩…∩Am|
|A1∪A2∪…∪Am|=∑i=1m|Ai|−∑1~m 的2组合|Ai∩Aj|+∑1~m 的3组合|Ai∩Aj∩Ak|+…+(−1)m−1|A1∩A2∩…∩Am|
对于本题,如果一个数满足多个性质,即可以同时被 pi1,pi2,…,pikpi1,pi2,…,pik整除,则这样的数共有
⌊npi1pi2…pik⌋
⌊npi1pi2…pik⌋
个。因此,问题就回到了给定 mm 个质数构成的集合 { p1p1, p2p2,…, pmpm },这个集合的所有非空子集。

深度优先搜索实现集合非空子集枚举
将这 mm 个数放入数组 pp 中,下标范围为 00 ~ m−1m−1,则问题转化为枚举集合 { 0,1,…,m−10,1,…,m−1 } 所有的非空子集。参考 AcWing 842. 排列数字 ,本题也可以用深度优先搜索。但与排列数字那道题不同的是,一串数字的多个排列有可能对应于一个子集。例如:1 2 3 4 5 和 1 3 2 5 4这两个排列对应于同一个子集 {1,2,3,4,51,2,3,4,5}。因此,为了避免深度优先搜索的时候出现重复搜索的情况,我们规定搜索的序列必须是单调递增的,即后面搜索到的数必须比前面的数大,这样就能避免因数字的排列引起的重复。例如,在之前的搜索我们得到的结果是 0 1 3 4,那么现在搜索的数的范围(即第 5 个数)必须从 5 开始,排列为 0 1 3 4 5 或 0 1 3 4 6 或 0 1 3 4 7 等等。

下面用归纳法证明上述算法的正确性。对于一个组合序列 x1,x2,…,xkx1,x2,…,xk,其中 x1<x2<…<xkx1<x2<…<xk。在第一个数的搜索我们会遍历所有的数,因此 x1x1 一定会被搜到,因此序列中的 x1x1 可以被搜到。假设 x1,x2,…,xi−1x1,x2,…,xi−1可以这个序列可以成功搜索,由于 xi>xi−1xi>xi−1,因此xixi也可以被搜到,所以序列 x1,x2,…,xi−1,xix1,x2,…,xi−1,xi一定会被搜到。因此归纳可得,任意一个组合序列都能被搜索到。

对于每次的搜索,我们需要直到上一级的乘积结果 times,即 pi1pi2…pik−1pi1pi2…pik−1。那么,对于本次搜索到的pikpik,直接乘上之前的乘积,得到新的乘积 new_times,便可算出容斥原理中的新的项 n/(pi1pi2…pik−1)n/(pi1pi2…pik−1),并据此修改结果变量 res. 但是,应该是加还是减呢?因此,我们还要从上一层接受操作数 op(等于+1或-1)。如果上一层操作数是op,那么传到这层的一定是 -op。这样,结果变量就被修改为 res += op * n / new_times

C++ 代码
/**

  • 本质是组合枚举问题,详见自己写的题解
    */

#include

using namespace std;

typedef long long LL;

const int M = 20;

int n, m;
int p[M];

/**

  • s: 当前允许搜索的最小下标
  • times: 前面的质数乘积。注意times变量的类型要取成long long,因为乘积有可能溢出
  • op: 操作数,取+1或-1
  • res: 保存最终结果的变量,由于此变量被引用,因此可以实时被修改
    */
    void dfs(int s, LL times, int op, int &res) {
    for (int i = s; i < m; i++) {
    LL new_times = times * p[i]; // 前面的乘积结果乘上这个质数的到新的乘积
    res += op * (n / new_times); // 将新的项加到结果上
    dfs(i + 1, new_times, -op, res); // 之后的数从i+1开始搜索,传递乘上pi后的新乘积,并将op取反
    }
    }

int main() {
scanf(“%d%d”, &n, &m);
for (int i = 0; i < m; i++) scanf(“%d”, p + i);

int res = 0;
dfs(0, 1, 1, res);

printf("%d", res);

return 0;

}

求乘法逆元
定义:即已知 bb 与 mm 互质 且 b|ab|a 则求一个xx 使得 a/b≡a∗xmodma/b≡a∗xmodm
[注] 简单定义 即 b∗x≡1modmb∗x≡1modm 且 bb 与 mm 互质 则 xx 为 bb 的逆元

  1. 当mm为质数时
    求解过程如下 :

由费马小定理可知

bm−1≡1modm
bm−1≡1modm

a/b≡a∗xmodm
a/b≡a∗xmodm
联立以上两式,得:
a/b∗bm−1≡a∗xmodm
a/b∗bm−1≡a∗xmodm
即为
a∗bm−2≡a∗xmodm
a∗bm−2≡a∗xmodm
而b|ab|a,且bb与m互质,因此对于bb来说,一定存在一个aa也与mm互质,故而aa可以在两边同时约去(感谢yxc大佬)

因此
x≡bm−2modm
x≡bm−2modm
无解条件 即 bb与mm不互质时无解,而mm为质数,所以bb只能为mm的倍数,此时无解,也就是b%m0b%m0
2.当m不是质数时,则需要用扩展欧几里得求逆元
3.逆元的作用
当 a,ba,b 很大时 求 a/bmodpa/bmodp 的值

而 a/bmodp≠((amodp)/(bmodp))modpa/bmodp≠((amodp)/(bmodp))modp

因此可以借助逆元转化为乘法,再算,设b的逆元为b−1b−1
则 a/bmodp=a∗b−1modp=((amodp)∗(b−1modp))modpa/bmodp=a∗b−1modp=((amodp)∗(b−1modp))modp
当m为质数时,求解逆元的C++代码如下
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int qmi(int a, int b, int p){//快速幂
int res = 1%p;
while(b){
if(b&1) res = (LL)resa%p;
a = (LL)a
a%p;
b>>=1;
}
return res;
}
int main(){
int n,a,p;
cin>>n;
while(n–){
cin>>a>>p;//p是质数 求 a的逆元(mod p意义下)
if(a%p) cout<<qmi(a,p-2,p)<<endl;
else cout<<“impossible”<<endl;
}
return 0

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值