快速排序
快排的思想
原理:以第一个数作为轴线,先保存这个值到tmp中,从右向左比较,如果后者小就将当前的数赋值到第一个位置,如果遇到赋值就变换方向,从左向右比较,如果左侧值大于轴线值就赋值,并在此改变比较方向。第一轮比较完之后把tmp赋值到中间的位置,第一轮比较的结果为轴线左边的全部小于轴线值,轴线右边的全部大于轴线值。然后递归再从左侧选出轴线,从右侧选出轴线,依次比较即可。
注:有一个快排的最坏情况就是如果待排序元素是正序或者逆序,就会将除轴值以外的元素分到轴值的一边。
快排参考图
取第一个数作为轴线,然后将它存放tmp中,定义i和j的变量,i初值是0,j的初始值是5。
拿tmp和arr[j]比较,如果后者大,让j–,然后再拿tmp和arr[j]比较。此时后者小。将arr[i]=arr[j]。同时改变方向arr[i]和tmp比较,如果前者的小让i++,如果前者的大,arr[j] = arr[i]。同时改变比较的方向,以此类推,经过第一轮比较就将轴线左侧的值小于轴线,轴线右侧的值大于轴线。递归比较左和右两个。最终将顺序排好即可。
快排的代码实现
#include <stdio.h>
void Show(int* arr, int n)
{
for (int i = 0; i < n; i++) {
printf("%d ", arr[i]);
}
printf("\n");
}
void QuickSort(int* arr, int start, int end)
{
int i = start, j = end;
int tmp;
tmp = arr[i];
while (i < j) {
while (i < j && tmp <= arr[j]) {
j--;
}
arr[i] = arr[j];
while (i < j && arr[i] <=tmp) {
i++;
}
arr[j] = arr[i];
}
arr[i] = tmp;
printf("start = %d,i-1 = %d\n",start,i-1);
if (start < i - 1)
QuickSort(arr, start, i - 1);
if (j + 1 < end)
QuickSort(arr, j + 1, end);
return;
}
int main(int argc, const char* argv[])
{
int arr[] = { 60, 33, 90, 12, 34, 88 };
QuickSort(arr, 0, 5);
Show(arr, 6);
return 0;
}
归并排序
#include <stdio.h>
#define M 4
#define N 7
#define K (M + N)
void MergeSort(int* a, int* b, int* c)
{
int i = 0, j = 0, k = 0;
while (i < M && j < N) {
if (a[i] < b[j]) {
c[k++] = a[i++];
} else {
c[k++] = b[j++];
}
}
while (i == M && j != N) {
c[k++] = b[j++];
}
while (j == N && i != M) {
c[k++] = a[i++];
}
}
void show(int* c)
{
for(int i=0;i<K;i++){
printf("%d\t",c[i]);
}
puts("");
}
int main(int argc, const char* argv[])
{
int a[M] = { 1, 5, 9, 12 };
int b[N] = { 2, 3, 4, 6, 7, 13, 15 };
int c[K] = { 0 };
MergeSort(a, b, c);
show(c);
return 0;
}
哈希查找
常见的查找方式
查找方法有顺序查找、折半查找、分块查找、Hash表查找等等
哈希查找的思想接原理
Hash表的含义
Hash表,又称散列表。在前面讨论的顺序、折半、分块查找和树表的查找中,其ASL的量级在O(n)~O(log2n)之间。不论ASL在哪个量级,都与记录长度n有关。随着n的扩大,算法的效率会越来越低。ASL与n有关是因为记录在存储器中的存放是随机的,或者说记录的key与记录的存放地址无关,因而查找只能建立在key的“比较”基础上。
理想的查找方法是:对给定的k,不经任何比较便能获取所需的记录,其查找的时间复杂度为常数级O(C)。这就要求在建立记录表的时候,确定记录的key与其存储地址之间的关系f,即使key与记录的存放地址H相对应:
Hash表的原理
对于数组来说获取成员的方式很简单直接通过下标即可完成,但是数组在编译的时候已经决定了大小。
链表虽然没有成员个数的限制,但是查找的时候挨个比较效率比较低。所以Hash就结合了两者的优点。
既保证了内存的占用,有保证了查找的效率。数组的大小的获取方式是拿数组成员的个数除以0.75。在得到的结果取取出最大的质数作为数组的下标。做种做法尽可能的解决掉了hash冲突的问题。
eg:
数n=11。令装填因子α=0.75,取表长m= n/α =14.6。从0-14.6中取最大的质数用13.
“保留余数法”选取Hash函数(p=13):
n={23,34,14,38,46,16,68,15,07,31,26}
哈希查找的代码实现
hash.h
#ifndef __HASH_H__
#define __HASH_H__
#include <stdio.h>
#include <stdlib.h>
#define N 13
#define datatype int
typedef struct node{
datatype data;
struct node *next;
}hash_t;
hash_t **HashCreate(void);
int HashInsertData(hash_t **t,datatype data);
void HashShow(hash_t **t);
int HashSearch(hash_t **t,datatype data);
#endif
hash.c
#include "hash.h"
hash_t **HashCreate(void)
{
hash_t **t;
//分配了13个指针的内存,让t指向它们
t = (hash_t **)malloc(sizeof(*t)*N);
//让每个指针都指向一块内存,就是头
for(int i=0;i<N;i++){
t[i] =(hash_t *) malloc(sizeof(**t));
t[i]->data = 0;
t[i]->next = NULL;
}
return t;
}
int HashInsertData(hash_t **t,datatype data)
{
hash_t *tmp;
tmp = malloc(sizeof(*tmp));
tmp->data = data;
tmp->next = t[data%N]->next;
t[data%N]->next = tmp;
}
void LinkListShow(hash_t* t)
{
while (t->next) {
printf("-%d", t->next->data);
t = t->next;
}
printf("-\n");
}
void HashShow(hash_t **t)
{
for(int i=0;i<N;i++){
printf("T[%d]",i);
LinkListShow(t[i]);
}
}
int LinkListCheckPosBydata(hash_t *t,datatype data)
{
int pos=0;
while(t->next){
if(t->next->data == data)
return pos;
pos++;
t = t->next;
}
return -1;
}
int HashSearch(hash_t **t,datatype data)
{
return LinkListCheckPosBydata(t[data%N],data);
}
main.c
#include "hash.h"
int main(int argc, char const *argv[])
{
hash_t **t;
int k[]={23,34,14,38,46,16,68,15,07,31,26};
t = HashCreate();
for(int i=0;i<11;i++){
HashInsertData(t,k[i]);
}
HashShow(t);
datatype data=100;
printf("%d的位置是T[%d],pos = %d\n",data,data%N,HashSearch(t,data));
return 0;
}