(微表情识别)Recognizing Spontaneous Micro-Expression Usinga Three-Stream Convolutional Neural Network(附码)

该文提出了一种名为TSCNN的模型,结合动态时间流、静态空间流和局部空间流模块来学习和整合微表情视频中的时间、全局和局部信息。文章详细阐述了顶点帧定位算法和时空特征提取方法,包括静态空间、局部空间和时间组件的网络架构。实验结果显示了这种方法在微表情识别任务上的有效性。
摘要由CSDN通过智能技术生成

代码地址:​​​​​​GitHub - bogireddytejareddy/micro-expression-recognition: Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

本文贡献

        本文设计了一个动态的时间流,静态空间流,和本地空间流模块的TSCNN,分别尝试学习和整合时间,整个面部区域,面部局部区域的线索在ME视频识别ME的目标。此外,还设计了一个可靠的顶点帧检测算法。本文主要从顶点帧定位、时空特征提取和TSCNN建模三个方面展开叙述:

顶点帧定位

对于视频中的每一帧来计算UP-LBP直方图,将每一帧划分为6*6的图像,如图求得Apex Frame

时空特征提取

在本文中,我们提出的时空特征由三个部分组成:静态空间、局部空间和时间分量。具体网络构架如下:

最终效果

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值