【菜鸡读论文】Recognizing Spontaneous Micro-Expression Using a Three-Stream Convolutional Neural Network

Recognizing Spontaneous Micro-Expression Using a Three-Stream Convolutional Neural Network

大家好呀!
又到了一周一次的《菜鸡读论文》时间啦!先来个酷炫小叮当作为我们的开场,代表我们菜鸡不屈不挠,坚持不懈,不撞南墙心不死,不跳黄河不回头的无畏精神。谁说,菜鸡没有春天,谁说菜鸡看不懂论文!如果说我们看不懂,那一定是论文不够简单!没错!作为菜鸡,我们要反其道而行之,成为读论文界的一股清流。

在这里插入图片描述

哈哈,开玩笑哈哈,下一秒,端正态度!昨天我正在和往常一样,开始准备自己今天要讲的两篇论文(没错!笔者现在已经开始了极限看论文的状态,非前一天不看论文)但是没想到!室友竟然在下午三四点就开始和男朋友连麦,谁懂啊!一整个emo住了!心情复杂!
言归正传,让我们来看看今天要读的论文

在这里插入图片描述
在本文中,我们提出了一个三流的卷积神经网络(TSCNN)通过学习ME视频的三个关键帧中的ME识别特征来识别MEs。我们设计了一个动态时间流、静态空间流和局部空间流 的模块,分别尝试学习和整合ME视频中的时间和整个面部区域和面部局部区域线索,达到最终识别MEs的目的。此外, 为了使TSCNN在不使用顶点帧的索引值的情况下识别TSCNN,我们设计了一种可靠的顶点帧检测算法。
首先让我们先看一下网络架构,有一个大体的了解,接下来将分别基于顶点帧检测算法三个不同的输入流进行介绍。

在这里插入图片描述

IDENTIFYING APEX FRAME(识别顶点帧)

在这里插入图片描述
如上图所示,为了消除头部姿势的影响,首先对齐面部区域。使用 an ensemble of regression trees回归树集合(ERT)定位68个面部地标
接下里选取两个内眼角坐标(x1,y1)、(x2,y2)计算旋转矩阵R,公式如下:

在这里插入图片描述

面部对齐之后,基于两个内眼角和鼻脊点将面部区域划分为6*6也就是36个块,参照上上图FIGURE3。
对于输入视频的每一帧,我们计算了每帧所对应的36个块中使用P=8和R=3的UP-LBP直方图。这样,每个帧将会对应36个10维的向量。
定义,第i帧和第j帧之间的特征差FD值为:
(注意,这里有一个参数λ,作者在实验部分对这个参数的不同取值进行了试验,等会儿可以看到结果)

在这里插入图片描述
其中,Hi,k和Hj,k的i和j代表第i和第j帧,k代表对帧分块后的第k块的UP-LBP直方图。计算起始帧和偏移帧的平均直方图,与之特征差最大的即为顶点帧。如下图所示:

在这里插入图片描述
弱弱的说,个人感觉这个图不是那么直观,0~N-1代表的是一个视频序列中的N帧,下面是每个块对应的UP-LBP直方图。

三个不同的输入流

在本文中,我们提出的时空特征包括static-spatial(空间静态)、local-spatial(局部空间)和temporal components(时间成分)
1、STATIC-SPATIAL
将顶点帧中整个人脸的灰度图像作为TSCNN中静态空间识别流的输入,它被裁剪到4848像素、最后,静态空间从面部提取的特征通过全连接层与TSCNN网络其他两个识别流中的另外两个特征向量融合在一起。
2、LOCAL-SPATIAL
使用多种大小的空间网格{n
n|22,33,44}将顶点帧的灰度图像划分为几个面部块,然后叠加得到一个面部块序列作为TSCNN中局部空间流CNN的输入。每个块的大小为4848像素。(作者在实验部分对不同的划分进行了测试,3*3划分的效果最好)
3、TEMPORAL COMPONENTS
起始帧、顶点帧、偏移帧中间的光流,下面我们来具体看一下:
如下图所示,Fonset、Fapex和Foffset分别表示ME视频中的起始帧、顶点帧和偏移帧。通过公式可以得到两组光流场(Fonset和Fapex之间、Fapex和Foffset之间,水平方向和垂直方向)。
在这里插入图片描述
在这里插入图片描述
这两组光流场可以完全代表微表情运动从开始到峰值,然后从峰值到终止的过程。

到这里,我们已经看完了三个都不同的输入流都是什么了,让我们看一看整个网络的架构图,来对三个输入有更好的理解。
在这里插入图片描述这三个不同的输入分别用三个不同的符号带代表,如图所示,T代表的就是两组光流场大小都是4848,S代表的顶点帧,也是缩放到4848,L代表的是被分割成nn块的顶点帧,每个块的大小都是4848,作者还给出了整个网络的详细参数,让我们一起看一下:

在这里插入图片描述
接下来,就是实验部分,因为图太多了,就不全放上来了,大家可以自己去论文上的该部分去看。
这个是不同块大小切割方式和L、S、T三个模块的使用与否对实验结果的影响。
请添加图片描述

这个是不同λ的取值,对实验结果的影响
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫头丁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值