转自AI Studio,原文链接:【全民动起来】反向卷腹AI计数器 - 飞桨AI Studio
一、 【基于PaddleHub的反向卷腹AI计数器】
练腹只做仰卧起坐?做太多可能伤你的背!试试反向卷腹吧!更安全
1.背景介绍
自从刘耕宏大哥的直播健身流行,引起了全民健身的热潮~
一边运动的时候一边还要数着自己做到第几个才能达标,但是偶尔会数错
为了针对做的时候不要再操心计数的问题,利用PaddleHub的做了个反向卷腹AI计数器。
AI帮你反向卷腹计数
2.实现思路
- 1.用户打开手机,根据提示调整身体与手机距离,直到人体完全位于识别框内,即可开始运动。
- 2.通过PaddleHub的human_pose_estimation_resnet50_mpii模型,进行人体关键点检测。
- 3.根据检测的数据计数(此处选择左(右)膝盖关键点进行判断,一次完整的左右来往为一次有效的计数)
二、环境准备
1.PaddleHub安装
In [1]
!pip install -U pip --user >log.log
!pip install -U paddlehub >log.log
In [2]
!pip list |grep paddle
2.human_pose_estimation_resnet50_mpii模型安装
- 模型地址: 飞桨PaddlePaddle-源于产业实践的开源深度学习平台
- 模型概述:人体骨骼关键点检测(Pose Estimation) 是计算机视觉的基础性算法之一,在诸多计算机视觉任务起到了基础性的作用,如行为识别、人物跟踪、步态识别等相关领域。具体应用主要集中在智能视频监控,病人监护系统,人机交互,虚拟现实,人体动画,智能家居,智能安防,运动员辅助训练等等。 该模型的论文《Simple Baselines for Human Pose Estimation and Tracking》由 MSRA 发表于 ECCV18,使用 MPII 数据集训练完成。
In [3]
!hub install human_pose_estimation_resnet50_mpii >log.log
In [4]
!hub list|grep human
三、人体关键点检测示例
1.关键点检测演示
针对下面这三张图片做关键点检测,具体如下:
In [32]
import cv2
import paddlehub as hub
pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")#human_pose_estimation_resnet50_mpii
image1=cv2.imread('work/ready.png') # 准备状态
image2=cv2.imread('work/doing.png') # 中间状态
image3=cv2.imread('work/finish.png') #结束状态
results = pose_estimation.keypoint_detection(images=[image1,image2,image3], visualization=True)
查看output_pose 下输出的图片:
3.如何判断反向卷腹的有效性
判断一次反向卷腹的依据是什么呢?
尽管上面的三张图有些点标定的不是很准确,但是我们可以比较明确的看到值得关注的点,例如膝盖的标定点。用膝盖点的移动可以作为评判标准。
In [29]
# 打印三张左右膝盖的关键点
print(results[0]['data']['right_knee'])
print(results[1]['data']['right_knee'])
print(results[2]['data']['right_knee'])
print(results[0]['data']['left_knee'])
print(results[1]['data']['left_knee'])
print(results[2]['data']['left_knee'])
#从结果来看,我们用左膝盖或者右膝盖的点都可
[783, 187] [498, 250] [784, 187] [820, 242] [498, 245] [809, 183]
四、智能计数
In [31]
import cv2
import paddlehub as hub
import math
from matplotlib import pyplot as plt
import numpy as np
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
%matplotlib inline
def countYwqz():
pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")
flag = False
count = 0
num = 0
all_num = []
flip_list = []
fps = 60
# 可选择web视频流或者文件
file_name = 'work/fan_juanfu.mp4'
cap = cv2.VideoCapture(file_name)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# out后期可以合成视频返回
out = cv2.VideoWriter(
'output.mp4',
fourcc,
fps,
(width,height))
while cap.isOpened():
success, image = cap.read()
# print(image)
if not success:
break
image_height, image_width, _ = image.shape
# print(image_height, image_width)
image.flags.writeable = False
results = pose_estimation.keypoint_detection(images=[image], visualization=True, use_gpu=True)
flip = results[0]['data']['right_knee'][0] # 获取膝盖的x轴坐标值
flip_list.append(flip)
all_num.append(num)
num +=1
# 写入视频
img_root="output_pose/"
# 排序,不然是乱序的合成出来
im_names=os.listdir(img_root)
im_names.sort(key=lambda x: int(x.replace("ndarray_time=","").split('.')[0]))
for im_name in range(len(im_names)):
img = img_root+str(im_names[im_name])
print(img)
frame=cv2.imread(img)
out.write(frame)
out.release()
return all_num,flip_list
def get_count(x,y):
count = 0
flag = False
count_list = [0] # 记录极值的x值
for i in range(len(y)-1):
if y[i] <= y[i + 1] and flag == False:
continue
elif y[i] >= y[i + 1] and flag == True:
continue
else:
# 防止附近的轻微抖动也被计入数据
if abs(count_list[-1] - y[i]) >200 or abs(count_list[-1] - y[i-1]) >200 or abs(count_list[-1] - y[i-2]) >200 or abs(count_list[-1] - y[i-3]) >200 or abs(count_list[-1] - y[i+1]) >200 or abs(count_list[-1] - y[i+2]) >200 or abs(count_list[-1] - y[i+3]) >200:
count = count + 1
count_list.append(y[i])
print(x[i])
flag = not flag
return math.floor(count/2)
if __name__ == "__main__":
x,y = countYwqz()
plt.figure(figsize=(8, 8))
count = get_count(x,y)
plt.title(f"point numbers: {count}")
plt.plot(x, y)
plt.show()
1. 计数效果如下
(从图可以看出总共有6个顶峰,对应计数有6个,和原视频总共做了6个反向卷腹对应上了)
2. 视频生成如下
在根目录下可以看到:
output.mp4
总结
项目借鉴了iterhui大佬的实现手法,修改了部分代码,并成功完成了反向卷腹的计数实现。
关于作者
- 感兴趣的方向为:目标检测,图像分类,图像分割等。
- 不定期更新感兴趣的CV比赛baseline等
- 个人荣誉:飞桨开发者技术专家(PPDE)
- 欢迎大家有问题留言交流学习,共同进步成长。