机器学习:支持向量机(SVM)

一、算法介绍

        支持向量机(Support Vector Machine,SVM)是一种常用的监督学习算法,用于分类和回归问题。它的目标是找到一个最优的超平面或者曲面,将不同类别的样本点分开。

        SVM的基本思想是将样本空间映射到一个高维特征空间,使得在该空间中可以找到一个最优的超平面,将不同类别的样本点分隔开来,并且使得两侧距离最大化。这个最优的超平面被称为分隔超平面(Separating Hyperplane)。对于线性可分的情况,SVM可以直接找到分隔超平面;对于线性不可分的情况,SVM采用核函数(Kernel Function)将样本映射到高维空间,从而在高维空间中找到一个能够将样本分隔开的超平面。

        SVM的关键思想是最大化间隔(Margin),即寻找一个能够使得不同类别样本之间的距离最大化的超平面。这样做的原因是,通过最大化间隔,可以增加分类器的鲁棒性和泛化能力,降低了对噪声和异常点的敏感性。

        SVM的求解过程可以用凸优化的方法来实现。它的目标是求解一个凸二次规划问题,通过构建拉格朗日函数和对偶问题,将原始问题转化为对偶问题,并且通过解决对偶问题来获得最优解。

        SVM在实际应用中有很好的表现,它可以处理线性可分、线性不可分以及非线性问题,具有较强的泛化能力。此外,SVM还可以通过引入不同的核函数来适应不同的数据分布特征,例如线性核、多项式核、高斯核等。

        需要注意的是,SVM算法的性能和训练时间与数据量和特征维度密切相关,当数据量非常大或者特征维度非常高时,SVM的训练时间会显著增加。

二、基于最大间隔分隔数据

2.1线性模型

         在二维空间上,两类点被一条直线完全分开叫做线性可分。如下图,在二维坐标下,样本空间中找到直线, 将不同类别的样本分开。

上述将数据集分隔开来的直线称为分隔超平面,即w^{T}x+b=0​。 

2.2超平面

        由于数据点都在二维平面上,所以此时分隔超平面就只是一条直线。但是,如果所给的数据 集是三维的,那么此时用来分隔数据的就是一个平面。显而易见,更高维的情况可以依此类推。如果数据集是1000维的,那么就需要一个999维的某某对象来对数据进行分隔。当数据集是N维时,需要一个N-1维的某某对象来对数据进行分隔。N-1维的该对象被称为超平面(hyperplane),也就是分类的决策边界。 分布在超平面一侧的所有数据都属于某个类别,而分布在另一侧的所有数据则属于另一个类别。 

2.3支持向量

支持向量就是离分隔超平面最近的那些点。

超平面方程:w^{T}x+b=0

三、寻找最大间隔

3.1超平面的性质

性质一:法向量和偏置项以任意相同的倍数放缩,新表达式描述的仍然是原来的超平面。假设放缩比例为,令后得到的超平面表达式为,显然,这个表达式表示的仍然是原来的超平面。

性质二:样本空间中的任意一个点,到超平面的距离表达式为

性质三:超平面将n维空间划分为3部分,分为是:①点在超平面里=0;②点在超平面的“上方” ;③点在超平面的“下方”

3.2寻找最大间隔

SVM中,分隔超平面是一个能够将正负样本恰好隔开的超平面,并且使得正样本在分隔超平面“上方”,负样本在分隔超平面”下方“。这就意味着w^{T}x+b=0,分隔超平面中的w,b需要满足以下条件:

         

其中为正样本点,为负样本点,而正负样本对应的标记值为,所以这两个条件可以改写成下面两个式子:

        

于是,对于线性可分的样本集:

        ,其中,

分类正确的超平面需要满足的条件为:

        

,我们可以得到更加紧凑的表达:

        "分类正确"

在SVM中,被称为样本点到超平面的函数间隔。

因此,我们可以得出结论,对于给定的线性可分的样本集合,必然存在分隔超平面可以将正负样本分开,该分类正确的超平面需要满足的条件为:样本点到超平面的函数间隔大于零。

所以,为了方便后续的计算,简化方程为:

         

 令 X_+和 X_- 位于决策边界上,标签分别为正、负的两个样本,考虑 X_+到分类线的距离为:

        d_+=\frac{\left | w^Tx_++b \right |}{\left \| w \right \|}

因此,分类间隔为:

         width = \frac{2}{\left \| w \right \|}      

最大化间隔也就是寻找参数wb , 使得width最大,即:

        

        

 四、拉格朗日乘子法

我们想要求解式

得到最大间隔划分超平面对应的模型:

其中是模型参数,这里我们使用拉格朗日乘子法得到其对偶问题,从而高效的求出结果,下面就看一下什么是拉格朗日乘子法和对偶问题。

拉格朗日乘子法是一种寻找多元函数在一组约束下的极值的方法,通过引入拉格朗日乘子,可将有d个变量与k个约束条件的优化问题转换为具有d+k个变量的无约束优化问题。

假定一个目标函数 f(x),在满足约束条件g(x)=0的前提下,使得f(x)有最小值。

该约束优化问题记为:

minf(x)

s.t.g(x)=0

可建立拉格朗日函数:L(x,μ)=f(x)+μg(x)

其中μ称为拉格朗日乘子。因此,可将原本的约束优化问题转换成等价的无约束优化问题:

minL(x,μ)

方程分别对x,μ \muμ求偏导

最后,联立方程求最后的解。

五、核函数

支持向量机算法分类和回归方法的中都支持线性性和非线性类型的数据类型。非线性类型通常是二维平面不可分,为了使数据可分,需要通过一个函数将原始数据映射到高维空间,从而使得数据在高维空间很容易可分,需要通过一个函数将原始数据映射到高维空间,从而使得数据在高维空间很容易区分,这样就达到数据分类或回归的目的,而实现这一目标的函数称为核函数。

工作原理:当低维空间内线性不可分时,可以通过高位空间实现线性可分。但如果在高维空间内直接进行分类或回归时,则存在确定非线性映射函数的形式和参数问题,而最大的障碍就是高维空间的运算困难且结果不理想。通过核函数的方法,可以将高维空间内的点积运算,巧妙转化为低维输入空间内核函数的运算,从而有效解决这一问题。

六、基于SVM实现鸢尾花分类预测

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split


def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target

    df.columns = ['sepal_len', 'sepal_wid', 'petal_len', 'petal_wid', 'label']
    print(df)

    data = np.array(df.iloc[:100, [0, 1, -1]])

    for i in range(len(data)):
        if data[i, -1] == 0:
            data[i, -1] = -1

    return data[:, :2], data[:, -1]


class SVM:
    def __init__(self, max_iter=100, kernel='poly'):
        self.max_iter = max_iter
        self._kernel = kernel

    def init_args(self, features, labels):
        self.m, self.n = features.shape
        self.X = features
        self.Y = labels
        self.b = 0.0

        # 将Ei保存在一个列表里
        self.alpha = np.ones(self.m)
        self.E = [self._E(i) for i in range(self.m)]
        # 松弛变量
        self.C = 1.0

    def _KKT(self, i):
        y_g = self._g(i) * self.Y[i]
        if self.alpha[i] == 0:
            return y_g >= 1
        elif 0 < self.alpha[i] < self.C:
            return y_g == 1
        else:
            return y_g <= 1

    # g(x)预测值,输入xi(X[i])
    def _g(self, i):
        r = self.b
        for j in range(self.m):
            r += self.alpha[j] * self.Y[j] * self.kernel(self.X[i], self.X[j])
        return r

    # 核函数
    def kernel(self, x1, x2):
        if self._kernel == 'linear':
            return sum([x1[k] * x2[k] for k in range(self.n)])
        elif self._kernel == 'poly':
            return (sum([x1[k] * x2[k] for k in range(self.n)]) + 1) ** 2

        return 0

    # E(x)为g(x)对输入x的预测值和y的差
    def _E(self, i):
        return self._g(i) - self.Y[i]

    def _init_alpha(self):
        # 外层循环首先遍历所有满足0<a<C的样本点,检验是否满足KKT
        index_list = [i for i in range(self.m) if 0 < self.alpha[i] < self.C]
        # 否则遍历整个训练集
        non_satisfy_list = [i for i in range(self.m) if i not in index_list]
        index_list.extend(non_satisfy_list)

        for i in index_list:
            if self._KKT(i):
                continue

            E1 = self.E[i]
            # 如果E2是+,选择最小的;如果E2是负的,选择最大的
            if E1 >= 0:
                j = min(range(self.m), key=lambda x: self.E[x])
            else:
                j = max(range(self.m), key=lambda x: self.E[x])
            return i, j

    def _compare(self, _alpha, L, H):
        if _alpha > H:
            return H
        elif _alpha < L:
            return L
        else:
            return _alpha

    def fit(self, features, labels):
        self.init_args(features, labels)

        for t in range(self.max_iter):
            # train
            i1, i2 = self._init_alpha()

            # 边界
            if self.Y[i1] == self.Y[i2]:
                L = max(0, self.alpha[i1] + self.alpha[i2] - self.C)
                H = min(self.C, self.alpha[i1] + self.alpha[i2])
            else:
                L = max(0, self.alpha[i2] - self.alpha[i1])
                H = min(self.C, self.C + self.alpha[i2] - self.alpha[i1])

            E1 = self.E[i1]
            E2 = self.E[i2]
            # eta=K11+K22-2K12
            eta = self.kernel(self.X[i1], self.X[i1]) + self.kernel(self.X[i2], self.X[i2]) - 2 * self.kernel(
                self.X[i1], self.X[i2])
            if eta <= 0:
                # print('eta <= 0')
                continue

            alpha2_new_unc = self.alpha[i2] + self.Y[i2] * (E2 - E1) / eta
            alpha2_new = self._compare(alpha2_new_unc, L, H)

            alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * (self.alpha[i2] - alpha2_new)

            b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * (alpha1_new - self.alpha[i1]) - self.Y[
                i2] * self.kernel(self.X[i2], self.X[i1]) * (alpha2_new - self.alpha[i2]) + self.b
            b2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * (alpha1_new - self.alpha[i1]) - self.Y[
                i2] * self.kernel(self.X[i2], self.X[i2]) * (alpha2_new - self.alpha[i2]) + self.b

            if 0 < alpha1_new < self.C:
                b_new = b1_new
            elif 0 < alpha2_new < self.C:
                b_new = b2_new
            else:
                # 选择中点
                b_new = (b1_new + b2_new) / 2

            # 更新参数
            self.alpha[i1] = alpha1_new
            self.alpha[i2] = alpha2_new
            self.b = b_new

            self.E[i1] = self._E(i1)
            self.E[i2] = self._E(i2)
        return 'train done!'

    def predict(self, data):
        r = self.b
        for i in range(self.m):
            r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i])

        return 1 if r > 0 else -1

    def score(self, X_test, y_test):
        right_count = 0
        for i in range(len(X_test)):
            result = self.predict(X_test[i])
            if result == y_test[i]:
                right_count += 1
        return right_count / len(X_test)

    def _weight(self):
        # linear model
        yx = self.Y.reshape(-1, 1) * self.X
        self.w = np.dot(yx.T, self.alpha)
        return self.w


X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)

svm = SVM(max_iter=800)
print(svm.fit(X_train, y_train))
print(svm.score(X_train, y_train))
print(svm.score(X_test, y_test))

运行结果:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值