题目
思路
根据题目要求,不同景点间的花费可以画成这种树
比如2 6 5 1 先求出总的花费
然后根据删去不同经典的不同的情况去计算
注意,题目已经直接给的两个直接连接景点的花费可以直接统计
间接连接的两个景点需要用dfs去搜索求出
dfs暴力代码
//暴力代码:DFS
#include<bits/stdc++.h>
#define endl '\n'
#define deb(x) cout << #x << " = " << x << '\n';
#define INF 0x3f3f3f3f
#define int long long
using namespace std;
const int N = 2e5 + 10;
typedef pair<int,int> pii;//终点 起点到终点的距离 /起点 终点
//map<pair<int,int>, int>st;//跟下面一样的
map<pii, int>st;//记录从{x, y}的距离是多少
int a[N];
vector<pii>edge[N];//存图
//s表示你要求的路径的起点
//v表示你要求的路径的终点
//u表示你当前走到了哪个点
//father表示你当前这个点的父亲节点是谁。避免重复走造成死循环
//sum表示从s走到u的路径花费总和。
bool dfs(int s, int u, int father, int v, int sum)
{
if(u == v)
{
st[{s, v}] = sum;
st[{v, s}] = sum;
// cout << s << " " << v << " " << sum << endl;
return true;
}
for(int i = 0; i < edge[u].size(); i ++)
{
int son = edge[u][i].first;
if(son == father)//不要来回重复走,规定方向
continue;
int w = edge[u][i].second;
if(dfs(s, son, u, v, sum + w))
return true;
}
return false;
}
void solve()
{
int n, k;
cin >> n >> k;
for(int i = 0; i < n - 1; i ++)
{
int x, y, t;
cin >> x >> y >> t;
edge[x].push_back({y, t});
edge[y].push_back({x, t});
}
for(int i = 0; i < k; i ++)
cin >> a[i];
//求出完整路线的总花费
//O(k * n)
int ans = 0;
for(int i = 0; i < k - 1; i ++)
{
dfs(a[i], a[i], -1, a[i + 1], 0);
ans += st[{a[i] ,a[i + 1]}];
}
for(int i = 0; i < k; i ++)
{
int tmp = ans;
if(i == 0)
tmp -= st[{a[i], a[i + 1]}];
else if(i == k - 1)
tmp -= st[{a[i - 1], a[i]}];
else
{
tmp -= st[{a[i - 1], a[i]}];
tmp -= st[{a[i], a[i + 1]}];
dfs(a[i - 1], a[i - 1], -1, a[i + 1], 0);
tmp += st[{a[i - 1], a[i + 1]}];
}
cout << tmp << endl;
}
}
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
//cin >> t;
while(t--)
solve();
}
总结
这道题目的正解是书上前缀和,反正也不会,不如写个暴力解法拿一半的分。
何况其实这个暴力也不简单。