一.向量
由n个数 组成的有序数组。共n维,一般由
表示。
写成行叫做行向量,写成列就是列向量。
k = 0 <--> k = 0 or
= 0.
二 .向量间的线性关系
2.1线性组合
定义:是m维向量。
若存在 使得
=
组合。
注:系数可以全取0.
1. 零向量可由任何向量表示。
2.向量组中任一向量都可以由向量组表示。
3任一向量可由,
,
表示
即:(1,2,3) = 1*(1,0,0)+2*(0,1,0)+3*(0,0,3)
例题:
不管给的是行还是列向量,均左乘 按列做成方程组的系数,
按列做成右边的常数项
都写成列向量。
2.2 向量组的等价
和
同维,
则他们可以相互表示:
1 反身性
2 传递性
3 传递性
2.3 线性相关和线性无关
是由n个m维的向量,若存在一组不全为 0 的
使得 = 0
则 线性相关。
全为 0 ,则线性无关。
2.3.1 结论
1 向量组中两向量成比例,则相关
2 含零向量的任意向量组必相关
3 一个零向量必相关 1* 0 = 0
4 一个非零向量必无关。
5 一个向量相关<-->
= 0
2.3.2 推论
1 若部分组相关--->则整体线性相关
2 整体组线性组无关-->部分在线性无关
例题
3 线性无关的向量组,接长向量组也无关
4 线性相关的向量组,截短向量组也相关
n个n维向量,D! =0,则线性无关 D = 0 线性相关
2.3.3 定理
1 线性相关,<--> 至少有一个向量可由其他向量表示。
2 线性无关。
相关,
可由
唯一表示。
证明 定理2
=
1
=
2
1-2 = 0 =
因为当等式为0 时,线性无关,所以他前边的系数必须为0,因此 m1 = n1
m2 = n2.只有唯一解。
替换:
1 无关,可由
表示,则,s<=t
2 可由
表示。S>T ,
线性相关
m>n,m个n维向量相关,向量个数>向量维数 必相关。
推论:两个等价的线性无关组含向量的个数相同。
三.向量的秩
的部分组均可由
线性表示
满足 1 线性无关
2 每个向量均可由 表示,
是这个向量的极大线性无关组
定理 1 : 线性无关 2 :任意r+1 都是线性相关的。
3.1 向量的秩定义:
极大线性无关组含有的向量的个数 r()
注 1 : 0<=r()<=min(向量的个数,向量的维数)
2:如果 线性无关,<-->r = s
3 如果 线性相关,<-->r < s
定理:可由
表示 ,
则r()<=r(
)
3.2 行秩与列秩
行向量组的秩叫行秩
列向量组的秩叫列秩
定理;行秩数 = 列秩数 = r(A)
定理:r(AB) < = MIN(r(A),r(B)
定理:初等行变换,不改变列向量组间的线性关系
综合例题s
四. 线性方程组
4.1 线性方程组有解的判定
系数矩阵 增广矩阵
,
线性方程的唯一解 ,无穷解,无解:
当 有唯一解
当 有无穷多解
当 无解
m是方程的个数,n是未知量的个数
4.2 齐次方程组的解
齐次方程至少有零解
推论:
1 有唯一解(零解)
2 齐次方程有非零解 <-->
3 方程的个数< 未知数的个数 一定有非零解
4 方程的个数 = 未知数的个数 有非零解 <-->
例题
(1 3 0 5)(1 2 1 4) (1 1 2 3)(2 5 1 9)(1 -3 6 -1)
解:设
1
2
3
4
由 1 2 3 4式可得
假定让 .可得到一个解
假定让 其他时。。。。。,可以无数解
4.3 方程组解的结构
方程组结构有 零解,无解,无穷解,这里主要探讨 无穷解
4.3.1 齐次方程的解 
其中是矩阵,
x是列向量
1 齐次方程组2个解相加仍然时这个齐次方程的解
2 齐次方程的解的倍数也是齐次方程的解
是
的解,
也是解
4.3.2 基础解系
都是方程的解
满足 1 互相之间线性无关,2 任意解可由表示。
基础解系的个数:n-r(A)个(n是未知量的个数,r(A)矩阵的秩)
4.4 非齐次方程组的解
如果令,即
则 齐次方程组叫非齐次方程组的导出组。
1: 是
的解,
是
的解
2: 是
的解
是
的解
是
的解
4.4.1 非齐次方程组的结构
是
的一个解:特解
是
的一个解:通解
其中
是
的基础解系
是
的全部的解或者叫通解。
可以由
的一个特解+
基础解析的线性组合来表示
步骤写出增广矩阵即A横线,
1 只做行简化阶梯型
2 非零行的首非零元的系数1 留在左边,其余挪到右边
3 写出非齐次方阵组,指出谁是自由未知量,右边的 都是自由未知量,
4 令自由未知量均取0.得的一个特解
5 令同解方程组的右边常数项均为0,得 的同样方程组 得到基础解析
6 组合特解和系数*基础解析的线性组合
五. 特征值特征向量
5.1 特征值特征向量定义
A是n阶的方阵,数存在非零列向量
使得
,那么
是特征值,
是对应的特征向量。
可以为0 ,
不能为0 的列向量
3*4
4*1 =
*
4*!
其中 叫特征多项式
叫特征方程 求出的
叫特征根或特征根。
1 是 A的特征值,
是
对应的特征向量,c!=0,c
也是
的特征向量
cA = A
C =
CA
5.2 特征值特征向量的基本性质
1 和
有相同的 特征值
2 矩阵的每行元素的绝对值之和小于1
矩阵 的每列元素的绝对值之和小于1
那么的特征值的模小于1
3 矩阵 的n个特征值
那么
>1 所有特征值之和等于 的主对角线之和,
>2 所有的特征值相乘等于
4 互不相同的特征值对应 的特征向量
无关
56
K重特征根对应的线性无关的特性向量的个数<=K