线性代数3

一.向量

由n个数 a_{1},a_{2},a_{3},a_{1},....a_{n},组成的有序数组。共n维,一般由\alpha \beta \gamma表示。

写成行叫做行向量,写成列就是列向量。

\begin{pmatrix} 10 & 10 &10 \end{pmatrix}\begin{pmatrix} 10\\ 10\\ 10 \end{pmatrix}

k\alpha = 0 <--> k = 0 or \alpha = 0.

二 .向量间的线性关系

2.1线性组合

定义:\beta ,\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{n}是m维向量。

若存在k_{1},k_{2},k_{3},k_{n}, 使得   \beta = k_{1}\alpha _{1}+k_{2}\alpha _{2}+...k_{n}\alpha _{n},组合。

注:系数可以全取0.

1. 零向量可由任何向量表示。0 =0\alpha _{1}+0\alpha _{2}....+0\alpha _{n},

2.向量组中任一向量都可以由向量组表示。\beta _{3} =0\alpha _{1}+0\alpha _{2}+1\alpha _{3}....+0\alpha _{n},

3任一向量可由\varepsilon _{1} = \left ( 1,0,0,...0 \right ),\varepsilon _{2} = \left ( 0,1,0,...0 \right ),\varepsilon _{n} = \left ( 0,0,0,...1 \right )表示

即:(1,2,3) = 1*(1,0,0)+2*(0,1,0)+3*(0,0,3)

例题:

不管给的是行还是列向量,\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{n}均左乘 按列做成方程组的系数, \beta 按列做成右边的常数项

\alpha \beta都写成列向量。

2.2 向量组的等价

\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{n}\beta _{1},\beta _{2},\beta _{3},...\beta _{n},同维,

则他们可以相互表示:

1 反身性

2 传递性

3 传递性

2.3 线性相关和线性无关

\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{n}是由n个m维的向量,若存在一组不全为 0 的k_{1},k_{2},k_{3},k_{n},

使得k_{1}\alpha _{1}+k_{2}\alpha _{2}+...k_{n}\alpha _{n}, = 0

\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{n} 线性相关

全为 0 ,则线性无关。

2.3.1 结论

1 向量组中两向量成比例,则相关

\binom{1}{2}\binom{2}{4}

2 含零向量的任意向量组必相关 0\alpha _{1}+0\alpha _{2}+...1*0 = 0

3 一个零向量必相关  1* 0 = 0

4 一个非零向量必无关。

5 一个向量\alpha相关<-->  \alpha = 0

2.3.2 推论

         1 若部分组相关--->则整体线性相关

         2  整体组线性组无关-->部分在线性无关

例题

         3 线性无关的向量组,接长向量组也无关

         4 线性相关的向量组,截短向量组也相关

n个n维向量,D! =0,则线性无关  D = 0 线性相关

2.3.3 定理

1 \alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s}线性相关,<--> 至少有一个向量可由其他向量表示。

2 \alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s}线性无关。\alpha _{1} ,\alpha _{2} ,\alpha _{4}... ,\alpha _{s},\beta 相关,\beta可由\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s}唯一表示。

证明 定理2

\beta = m_{1}\alpha _{2}+m_{2}\alpha _{2}+...m_{n}\alpha _{n}   1

\beta =n_{1}\alpha _{2}+n_{2}\alpha _{2}+...n_{n}\alpha _{n}        2

1-2 = 0 = (m_{1}-n_{1})\alpha _{1}+ (m_{2}-n_{2})\alpha _{2}+ (m_{n}-n_{n})\alpha _{n}

因为当等式为0 时,\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s}线性无关,所以他前边的系数必须为0,因此 m1 = n1

m2 = n2.只有唯一解。

替换:

1   \alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s} 无关,可由\beta _{1},\beta _{2},\beta _{3},...\beta _{t},表示,则,s<=t

\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s} 可由\beta _{1},\beta _{2},\beta _{3},...\beta _{t}, 表示。S>T , \alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s} 线性相关

m>n,m个n维向量相关,向量个数>向量维数 必相关。

推论:两个等价的线性无关组含向量的个数相同。

三.向量的秩

\alpha _{1},\alpha _{2},\alpha _{3}...\alpha _{s},的部分组均可由\alpha _{1},\alpha _{2},线性表示

满足 1 \alpha _{1},\alpha _{2}, 线性无关

         2 每个向量均可由\alpha _{1},\alpha _{2}, 表示,

\alpha _{1},\alpha _{2},是这个向量的极大线性无关组

定理    1 :\alpha _{1},\alpha _{2}, 线性无关   2  :任意r+1 都是线性相关的。

3.1 向量的秩定义:

极大线性无关组含有的向量的个数 r(\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4})

注 1 : 0<=r(\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s})<=min(向量的个数,向量的维数)

2:如果 \alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s}线性无关,<-->r = s

3 如果 \alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s}线性相关,<-->r < s

定理:\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s}可由 \beta _{1},\beta _{2},\beta _{3},...\beta _{t},表示 ,

则r(\alpha _{1} ,\alpha _{2} ,\alpha _{3} ,\alpha _{4}... ,\alpha _{s})<=r(\beta _{1},\beta _{2},\beta _{3},...\beta _{t},)

3.2 行秩与列秩

行向量组的秩叫行秩

列向量组的秩叫列秩

定理;行秩数 = 列秩数 = r(A)

定理:r(AB) < = MIN(r(A),r(B)

定理:初等行变换,不改变列向量组间的线性关系

综合例题s

四. 线性方程组

4.1 线性方程组有解的判定

x_{1}+x_{2}+x_{3} = 1

x_{1}-x_{2}-x_{3} = -3

2x_{1}+9x_{2}+10x_{3} = 11

系数矩阵A = \begin{pmatrix} 1 &1 &1 \\ 1 &-1 &-1 \\ 2& 9 & 10 \end{pmatrix} 增广矩阵\hat{A}\hat{A} =\begin{pmatrix} 1 &1 &1 & 1\\ 1 &-1 &-1 &-3 \\ 1& 9 &10 &11 \end{pmatrix}

x_{1} \begin{pmatrix} 1\\ 1\\ 2\end{pmatrix}+,x_{2} \begin{pmatrix} 1\\ -1\\ 9\end{pmatrix}+x_{3} \begin{pmatrix} 1\\ -1\\ 10\end{pmatrix}=\begin{pmatrix} 1\\ 3\\ 10\end{pmatrix}

x_{1}\alpha _{1}+x_{2}\alpha _{2}+x_{3}\alpha _{3}= \beta

线性方程的唯一解 ,无穷解,无解:

r(A) = r(\hat{A}) = n 有唯一解

r(A) = r(\hat{A}) < n 有无穷多解

r(A) <> r(\hat{A})  无解 

m是方程的个数,n是未知量的个数

4.2 齐次方程组的解

齐次方程至少有零解

推论:

1 r(A) = r(\hat{A}) = n 有唯一解(零解)

2 齐次方程有非零解 <--> r(A)<n

3 方程的个数< 未知数的个数 一定有非零解 r(A)<=MIN{m,n} = m < n

4 方程的个数 = 未知数的个数 有非零解 <-->\left | A \right | = 0

例题

(1 3 0 5)(1 2 1 4) (1 1 2 3)(2 5 1 9)(1 -3 6 -1)

解:设 x_{1}\alpha _{1}+x_{2}\alpha _{2}+x_{3}\alpha _{3}+x_{4}\alpha _{4}+x_{5}\alpha _{5}+ = 0

1 x_{1}+x_{2}+x_{3}+2x_{4}+x_{5} =0

2 3x_{1}+2x_{2}+x_{3}+5x_{4}-3x_{5} =0

3 x_{2}+2x_{3}+x_{4}+6x_{5} =0

4 5x_{1}+4x_{2}+3x_{3}+9x_{4}-x_{5} =0

由 1 2 3 4式可得

x_{1} = x_{3} -x_{4} +5x_{5}

x_{2} = 2x_{3} - x_{4} -6x_{5}

假定让 x_{3} =x_{4} =x_{5} = 1.可得到一个解

\begin{pmatrix} 5\\ -9\\ 1\\ 1\\ 1\end{pmatrix}

假定让x_{3} =x_{4} =x_{5} = 其他时。。。。。,可以无数解

4.3 方程组解的结构

方程组结构有 零解,无解,无穷解,这里主要探讨 无穷解

4.3.1 齐次方程的解 AX = 0

其中A是矩阵,Xx是列向量

1 齐次方程组2个解相加仍然时这个齐次方程的解

A(\eta _{1} \ + \eta _{2}) = A\eta _{1} +A\eta _{2} = 0+0 =0

2 齐次方程的解的倍数也是齐次方程的解

\etaAX = 0的解,c\eta也是解 A(c\eta ) = cA\eta = c*0 = 0

4.3.2 基础解系

\eta _{1} \eta _{2} \eta _{3} \eta _{n}都是方程的解

满足  1 互相之间线性无关,2 任意解可由\eta _{1} \eta _{2} \eta _{s}表示。

基础解系的个数:n-r(A)个(n是未知量的个数,r(A)矩阵的秩)

4.4 非齐次方程组的解

AX = b

如果令b = 0,即 AX = 0 则 齐次方程组叫非齐次方程组的导出组。

1: \alpha _{1}, \alpha _{2}AX = b的解,\alpha _{1}-\alpha _{2}AX = 0的解

A(\alpha _{1}- \alpha _{2}) = A\alpha _{1}-A\alpha _{2} = b-b =0

2: \alpha _{0}AX = b的解 \etaAX = 0 的解 \alpha _{0}+\etaAX = b的解

A(\alpha _{0}+\eta ) = A\alpha _{0}+A\eta = b+0 = b

4.4.1 非齐次方程组的结构

\alpha _{0}AX = b的一个解:特解

\etaAX = 0 的一个解:通解

\eta = c_{1}\eta _{1}+ c_{2}\eta _{2}+...+ c_{n-r}\eta _{n-r} 其中\eta _{1},\eta _{2},...\eta _{n-r}AX = 0的基础解系

\alpha _{0}+c_{1}\eta _{1}+ c_{2}\eta _{2}+...+ c_{n-r}\eta _{n-r}AX = b的全部的解或者叫通解。

AX = b 可以由AX = b 的一个特解+AX = 0基础解析的线性组合来表示

步骤写出增广矩阵即A横线,

1 只做行简化阶梯型

2 非零行的首非零元的系数1 留在左边,其余挪到右边

3 写出非齐次方阵组,指出谁是自由未知量,右边的 都是自由未知量,

4 令自由未知量均取0.得AX = b的一个特解

5 令同解方程组的右边常数项均为0,得AX = 0 的同样方程组 得到基础解析

6 组合特解和系数*基础解析的线性组合

五. 特征值特征向量

5.1 特征值特征向量定义

A是n阶的方阵,数\lambda存在非零列向量\alpha使得A\alpha =\lambda \alpha,那么\lambda是特征值,\alpha是对应的特征向量。

\lambda 可以为0  ,\alpha不能为0 的列向量

\begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}3*4\begin{pmatrix} \\ \\ \\ \end{pmatrix}4*1 = \lambda*\begin{pmatrix} \\ \\ \\ \end{pmatrix}4*!

\lambda \alpha -A\alpha = 0

(\lambda E-A)\alpha =0

其中 \left | \lambda E-A \right | 叫特征多项式  \left | \lambda E-A \right |=0叫特征方程  求出的\lambda叫特征根或特征根。

1 \lambda 是 A的特征值,\alpha\lambda 对应的特征向量,c!=0,c\alpha也是\lambda的特征向量

c\lambdaA = A \lambda C = \lambdaCA

5.2 特征值特征向量的基本性质

1 AA^{T}有相同的 特征值

\left | \lambda E-A^{T} \right | = \left | \lambda E^{T} -A^{T} \right | =|(\lambda E-A)^{T}| = \left | \lambda E-A \right |

2 矩阵A的每行元素的绝对值之和小于1

 矩阵 A的每列元素的绝对值之和小于1

那么A的特征值的模小于1

3  矩阵 A的n个特征值\lambda _{1},\lambda _{1},\lambda _{n}, 那么 

     >1 所有特征值之和等于 A的主对角线之和,

     >2 所有的特征值相乘等于\left | A \right |

4 互不相同的特征值\lambda _{1},\lambda _{1},\lambda _{m},对应 的特征向量\alpha _{1},\alpha _{1},\alpha _{m},无关

56

K重特征根对应的线性无关的特性向量的个数<=K

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值