线性代数1

                                            行列式

一. 排列

1.1排列:由1,2,3 .....,n 组成的一个有序数组叫n级排列("..."的意思是不能缺数,1245 不是n级排列)

123,132,213,231,312,321

n级排列的的可能性有 n!种。

1.2逆序:大数排在小数的前面。

逆序数的定义:逆序的总数。例 4213 ,4的逆序数是3, 2的逆序数是1  N(4213) = 3+1 = 4

标准排列:N(12345....n) = 0

例题:N(n (n-1).....3 2 1) = n-1 +n-2 +....+2+1 =   \frac{\mathrm{n} (n-1)}{\mathrm{2}}

1.3逆序数交换:

N(5 4 1 2 3)=4+3+0 = 7

N(5 4 2 1 3)=4+3+1 = 8

一个对换:奇偶性改变

定理1:n级排列种,奇偶排列各占一半

二.n阶行列式

\begin{vmatrix} a11 & a12 &a13 \\ a21 &a22 &a23 \\ a31&a32 &a33 \end{vmatrix} 

a11 a22 a33+ a12 a23 a31 +a13 a21 a32

- a13 a22 a31 - a12 a21 a33 -a11 a23 a32

2.1 n阶行列式的第一种定义:

按行展开-->行标取标准排列,列标取排列的所有可能性

从不同行不同列取出3个元素相乘。符号由列标排列的奇偶性决定。

一般的用:D = \left | aij \right |表示

特别的 \left | 8 \right | = 8

2.2 n阶行列式的第二种定义:

a11 a22 a33+a31 a12 a23 +a21 a32 a13

-a31 a12 a13 - a21 a12 a33 - a11 a32 a23

按列展开-->列标取标准排列,行标取排列的所有可能性

从不同行不同列取出3个元素相乘。符号由列标排列的奇偶性决定。

\begin{vmatrix} a11 & a12 &a13 \\ a21 &a22 &a23 \\ a31&a32 &a33 \end{vmatrix}

2.3 n阶行列式的第三种定义:即不按行,也不按列 符号由行标列标共同决定

三.行列式的性质

对行成立的性质,对列也成立。

3.1转置

D = \begin{vmatrix} 1 &2 &3 \\ 1 &1 &1 \\ 8 &8 & 8 \end{vmatrix}   = \begin{vmatrix} 1&1 &8 \\ 2&1 &8 \\ 3&1 &8 \end{vmatrix} 或者 =\begin{vmatrix} 1&1 &8 \\ 2&1 &8 \\ 3&1 &8 \end{vmatrix}

D的转置再转置还是等于D

3.1.1行列式转置值不变

3.1.2行列式两行互换,行列式的值要变号。推论--> 行列式2行相等,行列式的值为0

D = -D   2D =0  D =0

3.1.3 某一行都乘以K,等于K乘以D 推论-->某一行有公因子K,K可以提到外边去

若三行都有K ,则提K^{^{3}},即 K提3次

\begin{vmatrix} 1 &2 &3 \\ 4k& 5k &6k \\ 7&8 &9 \end{vmatrix} = k\begin{vmatrix} 1 &2 &3 \\ 4& 5&6\\ 7&8 &9 \end{vmatrix}

3.1.4 行列式2行成比例,则行列式的值为 0 ,D=0 推论--> 某一行全为 0 则D =0

3.1.5 行列式的某一行为2个数之和,则可以写成2个行列式的和 和的行拆开,其他行不变

(是和的那一行分开,其余的把持不变)

\begin{vmatrix} 1 &2 &3 \\ 4+4&5+5 &6+6 \\ 7&8 &9 \end{vmatrix} = \begin{vmatrix} 1 & 2&3 \\ 4&5 &6 \\ 7 &8 &9 \end{vmatrix}+\begin{vmatrix} 1 & 2&3 \\ 4&5 &6 \\ 7 &8 &9 \end{vmatrix}

***3.1.6 某一行/列乘以一个数,加到另一行/列上去,行列式的值不变。

四.行列式按行展开

4.1余子式 M

  \begin{vmatrix} 1 &2 &0 &3 \\ 1& 2&2 & 1\\ 2& 2& 3& 4\\ 5&2 & 6&6 \end{vmatrix}_{_{_{M32}}} = \begin{vmatrix} 1 &0 & 3\\ 1& 2& 1\\ 5& 6&6 \end{vmatrix}

4.2代数余子式 A

_{_{}}^{_{A32}} = ^{(-1)3+2}\begin{vmatrix} 1 &0 & 3\\ 1& 2& 1\\ 5& 6&6 \end{vmatrix}

定理1  按行展开D = \sum某行元素乘以自己代数余子式  (自己的行列式的值)

图为按第一行1 1 2展开

D = _{ai1}_{_{Ai1}}+....+_{ain}_{Ain}

a 是元素,A是元素对应的代数余子式

按行展开作用 1:降阶  2:选0多的展

例:

定理2 异乘变零:某行元素乘以零一行的代数余子式乘积之和 = 0

拉普拉斯定理:再K阶子式中,任意取定K行,有K行元素组成的所有K阶子式与代数余子式乘积之和 = D (行列式的值)

行列式相乘:(行列式乘法)必须同阶相乘 如果一个三阶一个四阶,就先算出行列式的值,再相乘

\begin{vmatrix} 1 &1 &1 \\ 2&0 & 0\\ 0& 0& 3 \end{vmatrix}乘以\begin{vmatrix} 1 & 2&3 \\ 1& 3& 2\\ 3&2 & 1 \end{vmatrix} = \begin{vmatrix} 5 &7 &6 \\ 2&4 &6 \\ 9&6 &3 \end{vmatrix}   5 = 1*1+1*1+1*3  7 = 1*2+1*3+1*2

行列式加边法 需要1 不改变行列式的值 2 有分母,分母不能是0

范德蒙行列式

反对称行列式:奇数阶  D=0

\begin{vmatrix} 0 &1 &2 &3 \\ -1&0 &-5 &6 \\ -2&5 &0 &-8 \\ -3&-6 &8 &0 \end{vmatrix} 主对角线全为0 上下位置对应成相反数 aij = -aji

对称行列式

\begin{vmatrix} 1 &1 &-1 \\ 1&2 &0 \\ -1&0 &3 \end{vmatrix}     主对角线元素无要求 上下位置对应相等 aij = aji

五.克莱姆法则

克莱姆法则应用的2个前置条件  1:  n个方程式  n个未知量 2 :D!=0

x1+x2+x3 =1          系数行列式\begin{vmatrix} 1 &1 &1 \\ 1& -1 &5 \\ -1&1 &6 \end{vmatrix}

x1 -x2+5x3 =6

-x1+x2+6x3 = 9

1 :三个方程,三个未知数 2 :D <>0  ,xj = Dj/D

5.1 齐次方程:

定义:当方程式等号右边的常数项全为0 则称之为齐次方程。

定理

1 若方程为齐次方程且方程个数 = 未知数个数 D<>0,只有0解

2 若方程为齐次方程且方程个数  = 未知数个数 有非零解 则 D=0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值