常规反欺诈模式
模式一重授信,轻支用
1 防范恶意注册:防恶意注册,
>1防范dos攻击或ddos攻击分布式攻击,抱库撞库等黑产行为。
2登录环境检查
>1异地ip检查,是否是常用设备,常用wifi检查等,异常登录时间
>1.1== ip 基站,基站公用出口,机房,专用出口,ip属于一个ipc(托管)企业宽带,公共场所,家庭宽带(团伙欺诈)
3授信策略
冠军/挑战者策略模式 :单挑规则+决策树(模型)
4首次支用策略
黑名单,设备异常,环境异常,交易异常,信息改动,密码找回 银行卡解绑
5贷中拦截策略
构建贷中变量,发现潜在风险,进行N+1次支用拦截,对于消费贷效果好
6实名认证
人脸识别,ocr识别(禁止相册导入),银行三要素/四要素检查 --身份证 银行卡,手机卡,征信
模式二轻授信,重支用(多余网贷和电商平台)
1 主动授信策略:又称为预授信策略,及通过数据积累,发现可授信客户后,发送信息,客户及活额度。
2实名认证
人脸识别,ocr识别(禁止相册导入),银行三要素/四要素检查 --身份证 银行卡,手机卡 征信
3硬规则策略
只会放一些硬性规则,例如黑名单,关联设备异常等
4模型评分
一般有养卡模型,冒用模型和中介和团伙模型
5调查分级策略
对于识别不清的进行调查,对于高风险直接拒绝,对于低风险可通过
6贷中拦截策略
构建贷中变量,发现潜在风险,进行N+1次支用拦截,对于消费贷效果好
模式三单笔单批业务
1 信息收集核验
采用安全可靠的方式收集客户信息,并进行交叉和特殊渠道的核验
2实地策略
销售人员实地走访,其实是对销售的侦察
3电话粥策略
后台风险人员,针对可疑人员的电话拨打,采取各种调查策略再次验证
4激活策略
对于有疑问风险的业务,搁置处理,不通不拒
5举报反馈策略
开通有偿举报电话,邮箱,接受同业和客户的投诉
模式四流量合作模式
1流量监测
合作方众多,流量比例的变化也许是风险。
2入口检测
同一流量不同入口的变化也许是风险
3补充策略
在合作方的基础上,补充风控,前提是要和知道合作方的偏好,对于主要规则也不可轻视
4拒绝客户复核策略
精准性不如自有业务,要开通复审通道
5复盘策略
不同流量间的客户有重复性监控,双重通过我拒绝,即通过
冷启动阶段规则设计
1 设备反欺诈
一、 申请频次类
二、一机多关联类
三、机器硬(软)类
四、时间空间类
2 信息虚假反欺诈
一、重复进件的信息的互检
二、关联人信息的矛盾
三、常识信息的矛盾
四、推理信息的疑似欺诈
3 关联图谱反欺诈
一、网络型异常规则
二、团风险分过大规则
三、关联形成的异常规则
4 地理位置反欺诈
一、ip关联类
二、GPS区化类
三、WIFI关联类
四、地址信息聚集类
5 名单类反欺诈
一、公检法黑名单
二、自有黑名单和合作类黑名单
三、筛选后的三方黑名单
四、严重多头类(1分钟申请10家)
6 通讯反欺诈
一、异常通话行为
二、通讯录异常
三、通话联系人异常
四、手机号消费、账单、状态异常
五、模型分不符
7 冷启动步骤
步骤一暴力穷举
确定目标大类:确定要穷举的规则大类,比如设备反欺诈的申请频次类
设计关键属性:确定申请频次要关联的属性信息如时间属性,地址属性
列举关键属性值:例如时间属性,可列举近一分钟,1小时、3小时、1天、7天等时间跨度可拉 大,侧重点不同。
异常点设计:比如地址属性信息,江西余干县、广西茂名电白区、海南瞻洲,要作为高风险区域点,从严设计。
合并同类项:穷举后会有一些维度相同,名称不同的规则,要合并去重
分类归档:穷举后的规则要分门别类形成文档,按时间轴可更新。
步骤二 数据和技术选择
筛选数据和技术:为设计好的规则和大类寻找合适的数据源和技术提供商(自研)
同类竞比:进行真实交易下稳定性和准确性测试,主要体现技术水平和数据覆盖度
冲突性测试:以黑名单为例,同质黑名单的重合度需要测试
建立主备机制:关键数据源和技术选取至少2家,小公司只能做备用
分流策略:对于实力相当的,也可以分流调用,对比实际风险表现
特殊响应策略:对于未查的,系统异常等特殊返回情况,建立补救策略。
步骤三 测试
样本选取:选取100+的好样本,尽量跨行业选取,设置测试集和训练集
触发率测试:线下方式对样本进行规则测试,针对触发率较高规则要重新审视
阈值调整或删减:对触发率为0或过高的规则进行阈值调整或主动删除
测试验证:对调整后的规则拿测试集再实验,观察规则表现稳定性和触发率情况。
分类文档:将调整阈值和删减的规则单独成册,测试合格规则单独成册。
步骤四 规则分类
确定分类方法:凭借初期的专家经验,进行严重程度的划分,综合考虑触发率和误识率高低。
规则打分:为了便于决策,需要确定每类规则的分数区间,建议使用打分机制。
聚类计算:对于不同类但是描述同一种风险的规则,在计算时要取MAX计算。
标签设置:因为复盘需要和欺诈分类需要,对重度规则要赋予标签,便于统计分析。
顺序设置:规则体系的跑分顺序可以从重到轻,或者从便宜到贵的方式设计。
步骤五 冠军/挑战/静默策略
策略分组:根据自己实验的目标,设置3-4组策略路由
冠军策略:主策略,建议70%比例,保证业务一定的通过率,初期欺诈率控制在1%,100条左右的规则。
挑战策略:更加严格的策略,可以将前面的砍掉或者放松阈值的规则发放进来,比例30%
静默策略:暴力衍生阶段所有规则设置,不做决策,仅保留数据。
复盘调整:1-2个月后,可以对三组策略进行复盘,然后调整比例或修改规则本身,3个月左右可以建立模型,逐渐替代一部分规则。
欺诈样本有效定义
信用卡:
定义难度:2级
类型1:提额后首次出现逾期。
类型2:套现客户出现逾期
类型3:某消费商户逾期率超过平均水平3倍以上
类型4:某消费逾期率超过平均水平3倍以上
类型5:超低额逾期
类型6:异常刷卡行为,如异常MCC,高额刷卡,刷卡地异常等等,
消金公司:
定义难度:4级
类型1:很多借款人成团,团逾期率过高
类型2:首笔全额提款后首期逾期
类型3:催收时发现借款人失踪,或告知非本人借款
类型4:机器人语音识别
互金平台:
定义难度:3级
类型1:通过电商平台发现消费异常订单
类型2:商户或消费者投诉出现欺诈
类型3:生态内其他行为异常
类型4:复杂网络中交易关联
类型5:设备信息异常
类型6:物流反馈异常
类型7:大型催收团队反馈
P2P:定义难度:4级
类型1:很多借款人成团,团逾期率过高
类型2:首笔全额提款后首期逾期
类型3:催收时发现借款人失踪,或告知非本人借款
类型4:机器人语音识别
欺诈样本有效定义的步骤
1 确定可用资源
2 统一账单日
3 欺诈排除
4 碰库及失联率评估
5 拒绝客户挖掘
反欺诈变量的设计与衍生
1 变量的设计思路
1简洁化思路:不追求错综复杂的计算逻辑,维度能降就降
2可解释原则:不搞暴力衍生,追求业务可解释性
3可获取原则:变量是可简单获取的,成本和获取量都可视
2 衍生构建方法
1 交叉验证法
2母子衍生法
3逐渐替代法
4相邻元素法
5拒绝衍生法
6反向推导法
7元素拼接法
8趋势衍生法
、 9前置条件法
3 策略迭代与优化
part--1 专家经验驱动的
1.1
part--2 特殊案件驱动的
part--3 矛盾关系引起的
part--4 技术变革引发的