猴子数据分析

                      第一章     业务指标

1.1求职时,需要的2个能力

1理解数据:懂得从数据中发现业务指标,这就要求你如何看懂数据。

2 使用相关指标去分析数据,使用多个指标去分析一个问题:要求你知道常用的指标有哪些,

为了掌握这些能力,你需要

1 如果理解数据

2 常用的指标有哪些

3 如何选择指标。

1.2常用的指标有哪些

        什么是指标:可以用某一统一标准去衡量业务的,这个统一标准就是指标。

1.2.1 用户数据指标

新增用户数:

        如果一个产品没有用户增长,那么用户数只能越来越少,例如人人网,同时新增用户可以判断各个渠道的推广效果

活跃率:

        在讲活跃率前,先了解下活跃用户数,活跃用户数是指日活跃还是周活跃呢,是登录了就算活跃还是使用了什么功能算活跃呢?因此前期先定义活跃数的,注(活跃用户数需要去重,一个人一天内多次登录算一次)

留存率:

        通过各种渠道推广来的用户,经过一段时间有的流失了,有的留存下来了,那么这群留下了的客户就是留存客户。

为什么要关注留存呢?留存可以评估产品功能对用户的粘性。在第1天新增的用户中,在第N天还使用过此产品的用户数,除以第1天新增的总用户数,就是留存率。(同样注意这里留存是怎么定义的)

1.2.2 行为数据指标

PV和UV、转化率、转发率和K因子

)1  PV和UV

PV(访问次数,page view):一定时间内某个页面的浏览次数,用户每打开一个网页可以看作一个PV,例如某一个网页一天中被打开的次数是10次,那么PV =10

UV(访问人数,unique visitor):一定时间内访问某个页面的人数,例如,某一个网页一天内被一个人打开10次,那么UV = 1。

)2   转发率

转发率 = 转发某个功能的用户数  /  看到该功能的用户数,例如转发这篇文章的用户数有10万人,转发的有1万人 那么转发率 :1/10 =0.1

)3  转化率

转化率的计算方法与具体业务场景相关

店铺转化率 = 购买产品的人数 / 到店铺的人数

广告转化率 = 点击广告的人数 / 看到广告的人数

)4  K因子(K-factor)

可用来衡量推荐的效果,即一个发起的推荐的用户可以带来多少新用户

K 因子 = 平均每个用户向多少人发出邀请  X   接收到邀请的人转化为新用户的转化率

当K >1,用户数回像滚雪球一样越来越大,当K<1时,新增用户数到达某个规模时会停止通过自传播生长。

1.2.3 产品数据指标

用来衡量业务总量的指标,例如成交总额,成交数量;用来衡量人均情况的指标,例如客单价;用来衡量付费情况的指标,例如付费率,复购率。

)1 总量

)2 人均

)3付费

付费相关的指标有付费率、复购率

)4 产品

产品相关的指标是指从产品的角度去衡量哪些产品好,哪些产品不好,通过找出好的产品进行推销,不好的产品去分析原因。常见的几个指标是热销产品数,好评产品数,差评产品数。

                                                           总结三种指标

1.2.4推广付费指标

在付费左广告推广时,涉及考察推广效果指标,从不同的付费渠道可以分为以下指标:展示位广告,搜索广告,信息流广告。

1.3 如何选择指标

这么多指标如何选择呢,选择的时候需要考虑2点

(1) 好的数据指标应该是比例,通常要理解一个数字真实的含义,最好把它除以一个总数,换成一个比例

(2)   根据目前业务的重点,找到北极星指标

北极星指标是衡量业务的核心指标,在实际业务中,北极星指标一旦确定,可以像天空中北极星一样,指引全公司向着同一方向努力。

        北极星指标没有唯一标准。不同的公司关注业务的重点不一样,即使是同一家公司在不同的发展阶段,业务重点也是不一样的,所以要根据目前的业务重点,去寻找北极星指标,

        来看第一个例子,图片分享APP Instagram在早期的社交功能和现在的不一样,当时市面上以及有了 facebook这种多功能的社交产品,如果做的产品和Facebook 一样,是很难走下去的,在分析了用户需求后,公司发现用户对分享照片的需求很大,于是公司团队找到的北极星指标是照片分享率,改变几个月后,专注于图片分享的instagram 正式推出,上线一天便获得25000个用户,3个月后这个数字达到100万。

        第二个例子是facebook,在facebook成立之前,世界上最大的社交网站上是myspace。myspace被facebook打败的原因有很多,但是2个公司有一个区别:myspace关心的核心指标是”注册用户数“,而Facebook在成立的早期就把核心指标定为 ”月活跃用户数“。

        第三个例子是音频喜马拉雅。喜马拉雅的用户最重要的行为是什么?是听音频,所以他们公司内部定的核心指标是“用户收听时长”,就是每一个用户进来以后,他能听多久的音频。

1.4 指标体系和报表

        很多数据分析招聘的要求里会写 "构建指标体系" ,所以建立指标体系是数据分析人员的一项基本技能,下面从4个问题出发,系统介绍指标体系;

        (1)什么是指标体系?

        (2)指标系统有什么用?

        (3)如何建立指标体系?

        (4)建立指标体系的有哪些注意事项?

          )1   什么是指标体系?

在实际工作中,要想准确的说i清楚一件事是不容易的,例如在金融公司,你和同事之间闲聊 "大概有一万多人申请贷款"  "很多人的申请都没有通过","感觉审核太严格了"。。。。但是当你向领导汇报工作,或者开数据会议的时候,这样说肯定是无法描述清楚的,例如以上的话可以改成:

        5月5日新申请贷款用户数10459人,超目标达成149人。

        5月5日当日申请贷款用户数30000人,当日通过2800人。

        截至到5月5日,5月4日申请贷款的30000人中有2800人通过了申请,通过率达到了9.3%。

上面通过一个“申请通过率”说清楚了申请贷款用户的情况,但是在实际工作中,往往一个指标无法解决复杂的业务问题,因此需要使用多个指标来从不同的维度评估业务,也就是使用 指标体系。指标体系是从不同的维度梳理业务,把指标有系统的组织起来,简而言之,指标体系=指标+体系,所以一个指标不能叫指标,毫无关联的指标也不能叫指标体系。

         2)指标系统有什么用?、

对于一家公司的业务是否正常(健康),可以通过指标体系对业务进行监控,当业务出现异常时,就能以最快的速度发现问题,开始分析,然后解决问题,最大化减少损失。

指标系统的作用包括:

        监控业务情况。

        通过拆解指标寻找当前业务问题。

        评估业务可改进的地方,找出下一步工作的方向。

       3)如何建立指标体系?

        1 明确部门KPI,找到一级指标: KPI并非只能是一个指标,有可能需要多个指标来评估,例如,某网贷公司产品部门的主要职能是开发出符合市场需求的贷款产品,在提升业务量(放款量)的同时,也要监控业务质量(放款逾期率),所以该部门的KPI有两个:贷款产品放款金额,贷款产品的坏账率。

        带来产品卖的好看光看"放款金额"还不够,还要关注毛利润,同时也要看用户数,因为用户数直接和获客成本挂钩,要防止营销成本太高,实际没利润这样不可持续情况的发生。所以该部门指定了三个一级指标:放款金额、毛利润、用户数。

        2 了解业务运营情况,找到二级指标: 有了一级指标之后,可以进一步将一级指标拆解为二级指标。具体如何拆解,要看业务时如何运营的,例如销售部门一般按地区运营,就可以从地区维度拆解,市场部门一般按用户运营,就可以从用户维度拆解。

        3 梳理业务流程,找到三级指标: 一级指标往往是业务流程最终的结果,例如积分抵扣金额,是业务流程(会员->购买旅游产品->使用积分抵扣->支付金额)最后的一个结果(支付金额)光看一个最后结果是无法监督的、改进业务流程的,这就需要一些更细致的指标,也就是添加三级指标,例如在业务流程中不同会员等级可以抵扣的金额不一样,不同旅游产品线可以抵扣的金额比例也不一样,所以需要把二级指标按照业务流程拆解为更细的三级指标,在会员业务节点可以拆分为LV1级会员数,LV2级会员数,LV3级会员数。在购买旅游产品业务节点可以拆解为酒店订单数、机票订单数、跟团游订单数,自由行订单数。

        每个指标可以从三个方面确定统计口径:

·                指标业务的含义:这个指标在业务上表示什么?

                 指标定义:每个指标是怎么定义的?

                 数据来源:从什么地方收集的原始数据,数据统计是时间范围是什么?

        4 通过报表监控指标,不断更新指标体系: 报表就是报告状态的表,是通过表格,图表来展示指标,从而方便业务部门掌握业务的情况,每天汇总更新的报表就做日报,每周汇总更新的报表就做周报。以下是制作报表的步骤。

建立指标体系需要注意

        1 没有一级指标,抓不到重点

        2 指标之间没有逻辑关系

        3 拆解的指标没有业务意义

        4一个人就完成了指标体系和报表,也不和业务部门沟通

                               第二章 分析方法论

为什么要学习分析方法论呢,首先来讲几个症状。

一、没有数据分析意识。

经常会说 我觉得、 我认为、 我感觉。

二、统计式的数据分析。

做了很多报表,却发现不了业务中的问题。

三、只会使用工具做数据分析。

工具大牛,但面对问题时,却还是不会分析。

什么是分析方法?

        当我们面对问题时,通常想法是零散的,没有一丝思路的,如果能将零散的想法整理成有条理的思路,从而快速解决问题,那该多好啊。

常用的数据分析方法有哪些呢?

如果你的分析目的是想把复杂的问题简单化-----使用逻辑树分析法

如果你的分析目的是想做行业分析-----使用PEST分析法

如果你的分析目的是想从多角度思考问题-----使用多维度拆解法

如果你的分析目的是想进行对比分析-----使用对比分析法

如果你的分析目的是想找到问题发生的原因-----使用假设检验分析法

如果你的分析目的是指定A和B有什么关系-----使用相关分析法

如果你的分析目的是想对用户留存和流失分析-----使用群组分析法

如果你的分析目的是想对用户价值分类-----使用RMF分析法

如果你的分析目的是想对用户行为或者产品做运营-----使用AARRR分析法

如果你的分析目的是想对用户分析的转化-----使用漏斗分析法

2.1.1 什么是5W2H分析方法?

        5W是指对于所有的现象都追问的5个问题:what(是什么)、when(何时)、where(何地)、why(为什么)、who(是谁)

        2H是指再追问2个问题:how(怎么做)、how much(多少钱)

2.1.2 5W2H分析方法能解决什么问题?

        他能帮助我们解决简单的问题,以下举几个列子。

案例1 :如何设计一款产品?

这时候可以用5W2H分析方法:

what(是什么):这是什么产品?

when(何时):什么时候需要上线?

where(何地):在哪里发布这些产品?

why(为什么):用户为什么需要她?

who(是谁):这是给谁设计的?

how(怎么做):这个产品需要怎么运作?

how much(多少钱):这个产品有付费功能吗?价格是多少?

案例 2 :设计一款App的调查问卷,如何设计问卷上的问题?

what(是什么):你用这款App做什么事情?

when(何时):你通常什么时间使用这款App?

where(何地):你会在什么场景使用这款App?

why(为什么):你为什么选择这款App?

who(是谁):如果你喜欢这款产品,你会推荐给谁?

how(怎么做):?你觉得我们需要加入什么功能才算比较新颖?

how much(多少钱):如果你认为这款App对你有帮助,你会花多少钱去购买这款App里的服务?

2.1.3 5W2H分析方法解决不了什么问题?

        5W2H分析方法很好理解,但是在复杂的商业问题面前不起作用。

这是因为复杂的商业问题不会只有一个原因,而是由多个原因引起的,例如“销量为什么下降”,就可能由多个原因导致的,这时候就需要运用其他分析方法。

2.2 逻辑树分析方法

2.2.1什么是逻辑树分析方法,有什么用?

        逻辑树分析方法是把复杂的问题拆解称若干个简单的子问题,然后像树枝那样逐渐展开

为了更符合人类的思考过程,我们可以把上图倒过来,或者横着放,就是常用的逻辑树分析方法,通过逻辑树分析方法,我们可以把一个复杂的问题变成容易处理的子问题。

2.2.2 如何使用逻辑树分析方法?

        不管是实际生活中还是工作中,我们经常会用到使用逻辑树分析方法来分析问题,例如你现在想给自己制定一个年度计划,但是要做的事情很多,思路很零散,为了理顺你的思路,可以使用逻辑树分析方法,把年度计划这个复杂的问题拆解成技能学习,读书,健身,旅行这几个子问题。

        

        逻辑树分析方法是科学家费米提出来的,这种分析问题的方法在面试中经常被用到,例如:北京有多少辆特斯拉汽车,某胡同口的煎饼摊一年能卖多少个煎饼,深圳有多少个产品经理,一辆公交车能装下多少个乒乓球,一个成年人有多少根头发等等,

        这类估算的问题,被称为"费米问题",为什么面试会问这种问题呢?

        这类问题能把两类人清楚的区分出来,一类是具有文科思维的人,他们擅长赞叹和模糊想象,主要依靠的是第一反应和直觉,例如小孩;另外一类是具有立刻思维的人,他们擅长通过逻辑推理,分析解决具体问题,理科思维不是人天生就有的,需要经过长期的训练。

        公司招聘需要的是嫩南瓜把事情做成,具有严密逻辑推理,分析能力的人,所以费米问题可以考察出一个人有什么样的思维方式,一般人拿到费米问题,就会摸不清头脑,不知道怎么解决,干脆凭感觉瞎猜一个数字,所以,你需要把自己的思路说出来,来证明你的思维方式是理科思维。

        回答费米问题,可以用到逻辑树分析方法,将一个复杂的问题拆解成子问题,然后逐一解决,下面我们来举一个例子:

        有人经常问费米,“芝加哥有多少钢琴调音师”,“什么是钢琴调音师呢”?为了保持钢琴的音准,需要定期由专业的人员检查,调整不准确的音。从事这类工作的人别称为钢琴调音师。

        对于这类问题,可以用到逻辑树分析方法来拆解,

钢琴调音师数量 = 全部钢琴调音师一年的总工作时间/一位调音师每年的工作时间

所以,可以把这个问题拆解成2个子问题。

        (1)全部钢琴调音师一年的总工作时间;(芝加哥所有的钢琴一年需要调琴的总时长)

        (2)一位调音师每年的工作时间;

对于全部钢琴调音师1年的总工作时间,又可以拆分为3个子问题

        (1)有多少架钢琴

        (2)钢琴师每年要调几次音

        (3)调一次音需要多长时间

现在我们一个个去解决这些子问题?

第1个子问题:有多少架钢琴?

        首先我们需要知道芝加哥有多少人,其次需要知道拥有钢琴的人所占的比例。芝加哥的人口可以通过网络查出来,大概有250万人,有钢琴的人占的比例是多少?具体数据不知道,但是我们可以猜一下,钢琴对于普通家庭来说比较贵,而且钢琴占地比较大,不方便放在家里,所以我们猜家庭拥有钢琴的比例是1%,为什么是1%,而不是5%呢?因为1%通常表示概率极低,有的机构拥有的钢琴数量比个人多,;例如音乐学院,所以我们再猜个数字,大概是2%左右。有了这些数据,就可以算出芝加哥大概有5万架钢琴了。

        下面来看第2个和第3个子问题

   钢琴每年要调几次音?钢琴调音师属于稀缺行业,人肯定不多,钢琴也不像吉他需要频繁的调音,估计是一年一次。

   调一次音需要多长时间?大概2小时。

第4个问题:一位调音师每年工作多长时间呢?

        美国每年有四个星期是假期,一年大概有50个星期。按照一周工作5天,每天8小时计算,这个算个数相乘,就可以得到一位调音师每年的工作时间是2000个小时。

        但是钢琴调音师要四处跑,路上肯定要花时间,所以减去20%用在路上的时间,调音师每年大概工作 1600个小时。       

 现在我们来把4个问题汇总一下

全部钢琴调音师一年的总工作时间是3个子问题的数字相乘,一共是10万个小时,而调音师每年工作1600个小时,我们用全部的钢琴调音师一年的总工作时间,除以以为调音师每年的工作时间,就是得到了62.5。再四舍五入,费米预测芝加哥大概有63位调音师。

        这个答案准不准呢?后来费米找到了一个芝加哥钢琴调音师的名单,上边一共有83个人,有不少人名还是重复的,所以费米估算出来的结果还是相当准的了。

2.2.3 注意事项

        需要注意的是,逻辑树分析方法在解决业务问题时,经常不是单独存在的,会融合在其他分析方法里,辅助解决问题。在后面其他分析方法学习中,你会看到使用了逻辑树的拆解图,来将一个复杂问题拆解成各个子问题。

2.3 行业分析方法

2.3.1 什么是行业分析方法?有什么用?

        什么时候需要进行行业分析方法呢?当个人对自己进行职业规划,思考选择哪个行业更好的时候,当公司需要对外部环境或者行业竞争对手有所了解,制定发展规划的时候,当面对重大问题,需要分析行业问题的时候。

        如何进行行业分析呢?就是用PEST分析方法。

        PEST分析方法是对公司发展宏观环境的分析,所以经常用于行业分析,通常从政策、经济、社会和科技这四个方面来分析的。

2.3.2 如何使用行业分析方法

        现在通过一个具体的例子来看下如何应用PEST分析方法。

        政策环境主要包括政府的政策、法律等。例如可以从这样几个问题去展开研究;

        相关法律有哪些?对公司有什么影响?

        投资政策有哪些?对公司有什么影响?

        最新的税收政策是什么?对公司有什么影响?

以下是艾瑞网<<2018年中国少儿编程行业研究报告>>的政策环境分析

       经济环境主要是指一个国家的国民收入,消费者的收入水平等。经济环境决定着公司未来市场能做多大,下图是<<2018年中国少儿编程行业研究报告>>的经济环境分析,从中可以得出教育重要性促使支出提升。

        社会环境主要包括一个地区的人口,年龄、收入分布、购买习惯、教育水平的等。下图是<<2018年中国少儿编程行业研究报告>>的社会环境分析,从中可以得到适龄人口数量的增长促使家长着眼未来。

        技术环境是指外部技术对公司发展的影响,下图是<<2018年中国少儿编程行业研究报告>>的技术环境分析,包括5G技术,大数据等。

2.4 多维度拆解分析方法

2.4.1 什么是多维度拆解分析方法?

        对于多维度拆解分析方法,要理解两个关键词:维度、拆解。我们通过一个案例来说明。

        老妈看扎扎单身多年,要给她介绍对象。

        老妈:这个男生很优秀。

        扎扎:怎么优秀了?

        老妈:你看,个子高,长得帅,而且家庭条件不错。

        扎扎:奥,原来是个高富帅啊。

老妈从不同的角度来看这个男生,这里的角度就是维度。

什么是拆解呢?

        拆解其实就是做加法,A = 维度1+维度2+维度3+。。。。,上边的例子中,老妈把优秀拆解成个子高,家庭背景好,长得帅。

2.4.2 多维度拆解分析方法有什么用?

        我们先来看一个案例。2012年中国15-59岁的劳动年龄人口数量为9.37亿人,比上年末减少345万人,下降幅度为0.6个百分点,这是多年增长后劳动年龄人口首次下降,这一人口架构变化趋势意味着在中国的人口红利消失,老龄化人口越来越多。如果你的亲戚去医院看病,不知道选择哪家医院好,这时候你学到的分析方法能起到非常关键的作用。

        假设在每个医院最近收治的1000例患者中,A医院有900例患者存活,然后B医院只有800例患者存活,这样看起来A医院的存活率更高,应该选择A医院,你的选择是正确的吗?

        现在我们使用多维度拆解分析方法来看下。

        光看患者整体时,我们可能注意不到 "数据构成要素的差异"。现在根据患者的健康情况,我们将每家医院入院的总人数拆解成为2组,一组是轻症患者,一组是重症患者,然后我们再来计算下患者的存活率,会有什么发现呢?

我们来比较A医院和B医院的重症患者组

A医院有100例患者入院时是重症患者,其中20例存活。存活率20%。

B医院有400例患者入院时是重症患者,其中200例存活。存活率50%。

所以,对于重症患者,去B医院的存活率更高,是更好的选择。

那如果亲人入院时是轻症患者呢?用同样的方法分析,出人意料,轻症患者在B医院的生成率也超过了A医院的生存率,B医院依旧是更好的选择。

        通过多维度拆解分析,我们发现了和一开始截然相反的结论,这种现象被称为"辛普森悖论"(S impson Paradox),也就是在有些情况下,考察数据整体和考察数据的不同部分,会得到相反的结论

        只看整体数据,我们可能注意不到"数据内部各个部分构成的差异"。如果忽略这种差异进行比较,就有可能导致无法察觉该差异所造成的影响,正如前面的案例,关注数据整体(入院的全部患者)和关注数据内部的不同部分(按健康状态将患者拆解为两组数据),就看到了不同的风景。

        这就好比我们玩过的俄罗斯套娃,整体看是一个,拆解开以后里面还有东西

        

        所以,我们需要从多个维度去观察数据,并相互验证,才能得出相对可靠的结论,例如我们可以把用户拆解成:用户 = 老用户(维度1)+新用户(维度2),从而可以看到老用户和新用户数据表现分别是什么。

        辛普森悖论时不时出现在生活中,英国一项调查显示,在20年里,吸烟者生存率高于不吸烟者。但是把参与者按年龄维度分组后,发现不吸烟人群的平均年龄显著较高,所以年龄才是导致不吸烟者组生存率低的原因。

2.4.3 如何使用多维度拆解分析方法。

        一般会从指标构成或者业务流程的维度来拆解。

        )1 从指标构成来拆解

从指标的定义来看指标的构成,例如,某店铺最近做了一个活动,但是活动后发现预期销售额没有达成,原因是什么呢?可以从指标的定义来拆解,销售额 = 新用户销售额+老用户销售额,所以销售额可以拆解为新用户销售额、老用户销售额。然后可以继续拆解新用户的转化和老用户的复购:

        新用户销售额 = 新用户数 * 转化率 * 新用户客单价

        老用户销售额 = 老用户数 * 复购率 * 老用户客单价

这样拆解后,有利于后续找到原因来制定对应的政策,如果是”新用户“导致的销售额目标没有达成,可以对新用户发小额无门槛的折扣券,因为新用户往往还没有对店铺建立信任,不会第一次就购买很多。如果是”老用户“导致的销售额目标没有达成,可以对老用户发高额满减折扣券,起到提升复购率的效果。

        )2 从业务流程来拆解

 按业务流程进行拆分析,例如按用户购买产品的业务流程来拆解。

现在通过一个案例来学习如何使用多维度拆解方法,一家线上店铺做了一波推广,老板想看看推广的效果如何,你该怎么办呢?

推广效果最直观的是看用户增长了多少,定义衡量指标为新增用户数,这里的新增用户数是指看到推广渠道的广告,进入店铺的人数。

我们可以按指标构成如城市、性别、渠道来拆解新增用户数。

        

      

按照地域细分,考察一线、二线、三线及以下等不同城市的新增用户数量情况。

按照性别细分,考察男性用户、女性用户分别是多少

按照渠道细分,考察公众号,百度、头条哪个渠道用户的来源多。

从地域维度来看,北京、上海等一线城市新增用户多,说明一线城市的用户对公司产品更感兴趣。
 

        店铺做推广的目的,最终是为了给店铺带来销量,所以我们可以从业务流程来拆解业务,考察哪个渠道来的用户更愿意再店铺购买。

        我们可以继续从业务流程来拆解渠道数据,用户购买的业务流程,我们可以分为四步:

        1,看到渠道的广告

        2,被广告吸引进入店铺

        3,再店铺选择感兴趣的商品。

        4,选择好商品,最终决定购买。

        按照业务流程拆解后,我们看到虽然渠道A带来的用户多,但是最终购买人数却低于渠道B带来的用户数。所以,渠道B的用户质量更高。

        

我们再来看一个案例。

        有一款APP,再观察用户留存率的时候,发现低年龄用户的留存率比高年龄用户的留存率低很多,这里的低年龄用户是指18岁以下的用户,例如初中生、高中生。进一步观察发现,这些低年龄的用户大多是使用一下APP就再也不用了。

        根据这个问题,可以从指标拆解构成,业务流程来拆解问题。

        )1 从指标构成拆解

        如果把18岁以下的都算作低龄,那么这个划分又不够细,因为18岁以下包含了3个学生阶段,小学生、初中生、高中生。不同的学生阶段的用户行为差异是比较大的,所i有可以按年龄维度来

细分。


由此可得到分析维度1:不同的低龄用户表现是否有差异?

        )2 从业务流程拆解

        新用户使用APP的业务流程如下:

        第一步,新用户下载APP,然后注册;

        第二步,用户看到APP首页推荐的内容,新用户注册的时候,APP会让用户选择感兴趣的的话题,然后APP根据用户的选择,给她推荐相关的内容,例如豆瓣,小红书等APP就是这样的注册流程。

        推荐的内容如果不正确,会影响用户的体验,例如我们挑选兴趣的时候选了电影,结果系统推荐了我们旅行,那根我的预期就会相差很远,就会觉得这个平台没有我想看的信息,自然就会离开,所以,这一步我们可以提出问题:推荐的内容可能不少低年龄用户想看的,从而导致留存率差。

        第三步,用户还可能会在APP里搜索自己感兴趣的内容。

        当用户下载了这个APP注册是时候,希望在这个平台上找到自己有价值的东西,如果没找到,那用户很大概率会流失。这一步我们可以提出问题:低年龄用户可能搜不到想看的内容,从而导致留存率差。由此我们得到分析维度2和分析维度3.

从指标构成和业务流程拆解,我们就将一个复杂的问题拆分成3个子问题

2.4.4 注意事项

        前面我么们讲到,只看数据整体,可能注意不到”数据内部各个部分构成的差异“,导致”辛普森悖论“。所以在有些情况下,考察数据整体和考察数据的不同部分,会得到相反的结论。

2.4.5 总结

        可以用下图记住多维度拆解法。

        第1个问题:是什么?

        对于多维度拆解分析方法要理解两个词,一个是”维度“,即我们日常生活中说的角度,另一个是“拆解”,其实就是做加法,问题 =维度1+维度2+。。。


        第2个问题:有什么用?

        有两个作用。第一个作用是,只看数据整体,我们可能注意不到”数据内部各个部分构成的差异“,所以我们需要拆解数据来分析。

        第二个作用是,遇到一个复杂的问题,不知道怎么解决的时候,我们可以用多维度拆解分析方法将一个复杂的问题变成可以解决的子问题,这背后的原理其实就是我们之前讲过的逻辑树分析方法。

        第3个问题:如果用?

        一般会从指标构成或业务流程的维度来拆解。

        )1从指标构成来拆解,分析单一指标的构成,例如单一指标为用户,而用户又可以拆解成新用户和老用户。

        )2从业务流程来拆解:按照业务流程进行拆解分析,例如不同的渠道用户的付费率。

        第4个问题:注意事项。

        要注意”辛普森悖论“,也就是在有些情况下,考察数据整体和考察数据的不同部分,会得到相反的结论,使用多维度拆解分析方法,可以防止”辛普森悖论“。

2.5 对比分析法

2.5.1 什么是对比分析法

        对比分析方法在我们生活中经常遇到,女友天天对我进行灵魂拷问:我和对面那个女孩谁胖?这就是对比分析方法。

        女友通过对比分析方法来判断自己体重是不是出了问题,在数据分析中,我们通过对比分析方法,来追踪业务是否有问题。例如,为了讨好女友,我准备给她买件新衣服,在商场看中一件衣服要299,我心想,299是不是有点小贵,店主过来指着另一件衣服说:你看这件呢,只要899。

        我一比较,顿时觉得299的这件衣服还是挺实惠的,

        发现没有,899那件衣服根本就不是拿来卖的,而是拿来对比的。

        心理学家给这种现象发明了一个术语叫做价格锚定,也就是通过和价格锚点对比,一些商品会卖的更好。

       《经济学人》是美国的畅销经济学杂志,它做过一个订阅实验,给用户以下3个选项进行选择:

       (1)只订阅电子版,59美元一年。

       (2)只订阅纸质版,125美元一年。

       (3)订阅纸质版+电子版,125美元一年。

        第2个选项和第3个选项的价格一样,但是第3个选项提供的服务更多。

        实验结果显示,只有订阅16%的人选择了第1个选项,有84%的人选了第三个选项,也就是有更多的人愿意花更多的钱去订阅杂志,

        如果把第2个选项去掉,对用户有影响吗?

        去掉第二个选项,选择125美元的用户减少到了32%。

        如果没有之前第2个选项,用户会和第1个选项对比,发现125美元不划算,当有第2个选项的时候,用户会将比较对象换成第2个选项,这样才能体现出第3个选项的优惠。

2.5.2 如何使用对比分析方法?

        想要进行对比分析,我们要弄清两个问题,和谁比,如何比较。

        1 和谁比

        和谁比一般分为两种:和自己比,和行业比。

        雷军在小米上市之前做了一个公开承诺:小米的硬件综合净利润率永远不会超过5%,如果有超过的部分,将超出的部分全部返还给用户。我们用对比分析方法来分析下这句话背后的真实含义。

        )1 和自己比

        在小米的招股说明书中可以看到,小米2015年的硬件毛利率是-0.3%,2016年的是3.4%,净利润率 = 毛利率 -  其他成本,所以再考虑上其他成本,小米和自己的历史业绩比,硬件净利润率肯定小于5%。

        )2 和行业比

        遇到问题,想知道是行业趋势还是自身问题,就可以和行业值对比,作为硬件行业的领头羊海尔公司,在2017年的净利润率是4.3%,也达不到5%。

        所以,通过对比分析方法可以看出,硬件净利润率能达到5%的公司几乎没有,所以雷军这个承诺其实是一种经过数据分析得出的结论,既不会让小米陷入无法实现承诺的困境,又可以在用户心中留下 小米性价比高 的产品形象。

        2 如何比较

        前面我们了解了对比分析方法的第一个问题:和谁比,现在我们来看第二个问题,如何比较,一般从3个维度比较:数据整体的大小,数据整体的波动、趋势变化。

        1)数据整体的大小

某些指标可用来衡量整体数据的大小, 常用的是平均值、中位数,或者某个业务指标。

        2)数据整体的波动

标准差除以平均值得到的值叫做变异系数。变异系数可用来衡量整体数据的波动情况。

        3)趋势变化

趋势变化是从时间维度来看数据随着时间发生的变化,常用的方法是时间折线图,环比和同比。

时间折线图是以时间为横轴,数据为纵轴绘制的折线图,从时间折线图上可以了解数据是从过去到现在发生了哪些变化,还可以通过过去的变化预测未来的动向。

环比是和上一个时间段对比,用于观察短期的数据集,例如本周和上周的对比,本月和上月对比(某数据在2020年12月比2020年11月下降了10%)。

同比是与去年同一时间段进行对比,用于观察长期的数据集,例如某数据在2020年12月比2019年12月下降10%。

前面我们知道了比较的2个问题:和谁比,如何比较。在实际应用对比分析方法的时候,为了防止遗漏我们可以用下图的 对比表格 来记录比较的维度,防止遗漏重要信息。

其中,第一列是比较的维度,中间几列是比较对象,最后一列是比较结论,用于记录每一行的比较结果。

2.5.3 注意事项

        在进行比较的时候,要注意比较对象的规模要一致,例如,折线图的横轴是月份,纵轴是每天平均销售额。从这个折线图反映的趋势来看,似乎可以得出比较结论:地区B的业务没有其他地区的好。

        当你把这个图表和分析结论拿给领导看时,领导说:这些地区的店铺数量不一样,直接比较可以吗?原来图片里统计的是公司各个地区的店铺总销量,各地区的店铺数量不一样,也会影响所在地区的销售额,这就好比,苏宁易购在某一线城市和三线城市的店铺数量不一样,两地每天的平均销售额差别也很大。

                        地区A :15        地区B :5        地区C :10

        所以,比较对象的规模要一致,这样才有可比性,那么这个案例里的问题如何解决呢?

        可以用每个地区的销售额除以店铺数量,这样就可以算出各个地区的单个店铺平均销售额。从下图可以发现,与其他地区相比,地区B的销售业绩并不差。

        A/B测试的背后也是用了对比分析方法,什么是A/B测试?

        做过APP功能设计的读者朋友可能经常会面临多个设计方案的选择,例如某个按钮是用蓝色还是黄色,是放在左边还是放右边,传统的解决方法通常是集体讨论表决,或者由某位专家或领导来拍板,实在解决不了时也有随机选一个上线的,虽然传统解决方法多数情况下也是有效的,但A/B测试可能是解决这列问题的一个更好的方法。

        简单来说,A/B测试就是为同一个目标制定2个版本,这2个版本只有某一方面不一样,其他方面保持一致,例如两个版本只有按钮的颜色不一样,让一部分用户使用A版本(实验组),另一部分用户使用B版本(对照组)。试运行一段时间后,分别统计两组用户的表现,然后对两组数据进行对比分析,最后选择效果更好的版本正式发布给全部用户。

        A/B测试怎么来的呢?

        2007年,谷歌的产品经理丹* 西罗克是奥巴马竞选团队的新媒体分析部分的负责人,他用A/B测试优化了竞选网站的捐款按钮,使得捐款金额增加了5700万美元,他对这个捐款的按钮做了什么呢?

        西罗克在奥巴马捐赠的页面上进行了A/B测试,发现:

        (1)对于第一次访问竞选网站的用户,按钮文字是” 捐赠并领取礼物“ 的效果最好。

        (2)对于长期访问竞选网站,但是从来没有捐款的用户,按钮文字是 “捐款 ”效果最好

        (3)对于过去曾经捐过款的用户,按钮文字是 “捐助” 效果最好。

        在奥巴马就任总统后,西罗克创办了一家网站优化公司(optimizely),这家公司的客户名单是各个总统的竞选团队。

        现在A/B测试已经广泛应用于互联网公司的产品优化,例如,缤客是一家线上国际旅游公司,类似于携程。这家公司每年要做大量的A/B测试来提升用户体验。

        这家公司是如果和A/B测试的呢?

        一般而言,如果一家公司要做A/B测试,要设立一个专门的团队,但是缤客通过内部的一个专门做A/B测试的平台,把A/B测试这件事情变得简单,几乎每个员工都可以方便的进行各种测试来验证自己的想法。

        在这家公司做A/B测试的流程是这样的:

        (1)发起申请,在申请里写清楚:为什么要做这次A/B测试?A/B测试的受益者是用户还是旅行社?以前做过哪些A/B测试?

      (2)如果申请通过,A/B测试就上线了,平台会自动检测测试过程和生成分析报告。

        再来看一个案例,在经济形式不好的时候,拉动消费有一个办法是发消费券,用户领取消费券后,在结账的时候就可以抵扣对应的金额,但是消费券还有个不好的影响-----日本曾向用户发放过消费券,但是效果却不好,因为一旦不发消费券了,消费很快就会下降,也就是没有长期效果。

        为了拉动受疫情影响的消费,杭州在2020年3月低到4月向本地居民发放了消费券,效果如何呢?北京大学光华管理学院的研究团队和蚂蚁金服研究院联合发布了一个报告,对这次消费券发放效果进行了研究。

        研究团队使用的方法是A/B测试。实验组是杭州3月27日的第一期消费券发放后的用户,对照组是没有领消费券的用户,在消费券过期后,与对照组相比,实验组的消费没有明显减少,也就是说,用户并没有因为之前用了消费券,之后就减少消费,所以这次消费券发放的效果很好。

        这次效果好的原因在于,之前日本发的是实体现金券,而这次杭州发的是数字消费券,数字消费券的一大好处是方便,用户在支付宝,微信等平台上就能领取。

2.5.4 总结

第一个问题:是什么?

        当我们对几个对象进行比较时,就要用到对比分析方法,正所谓,没有对比就没有好坏。

第二个问题:有什么用?

        在日常生活当日我们经常用到对比分析方法,例如女友通过对比分析方法来判断自己的体重是不是出了问题。

        在心里学中有“价格锚定”,通过和价格锚点对比,一些商品会卖的更好。

        在数据分析中,我们通过对比分析方法,来追踪业务是否有问题,例如:A/B测试。

第三个问题:如何用?

        进行对比分析,我们需要弄清楚2个问题:和谁比,如何比较。

        和谁比是指,要弄清楚是和自己比还是和行业比,和自己比是指和自己过去的历史数据比较。遇见问题,想知道是行业趋势,还是自身原因,就可以和行业值对比。

        对比如何比较,一般我们有以下3个维度:

        (1)用平均值,中位数,或者某个业务指标来衡量整体数据的大小。

        (2)用变异系数来衡量整体数据的波动情况。

·       (3)从时间维度来看数据随着时间发生的趋势变化,常用的方法是时间折线图,环比和同比。

        我给出了一个对比表格模板,你可以吧他看作一个万能模板,防止遗漏比较的信息,每当进行对比分析的时候,把这个表格填满就可以了。

        第四个问题:注意事项。

        在进行比较的时候,要注意比较对象的规模要一致。

2.6 假设检验分析方法

2.6.1 什么是假设检验分析方法?

        假设检验分析方法底层思想其实很简单,就是逻辑推理,这个逻辑推理,在我们生活中无处不在,如果你看过《神探狄仁杰》《白夜追凶》《唐人街探案》这些破案片,就会发现,剧中的破案高手都有一个破案套路,那就是先假设某个人就是嫌疑人,然后找证据,如果有足够的证据证明嫌疑人犯罪,才宣判嫌疑人有罪。

        同样在现实中,法官在审理案件的过程中,也首先会假设你被告方无罪,而指控方的工作就是搜集证据来说明法官或者陪审团,最后得出罪犯有罪的结论。

        我们平常说某个人心里细腻,逻辑严谨,其实你也可以做到,那就是掌握逻辑推理的方法:假设检验分析。假设检验分析方法是一种使用数据来做决策的过程。假设检验分析方法分为3步。

    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值