目录
1.1 通过split_train_val.py得到trainval.txt、val.txt、test.txt
1.2 通过voc_label.py得到适合yolov5训练需要的
1. 工业缺陷检测简介
在工业生产中,质量保证是一个很重要的话题, 因此在生产中细小的缺陷需要被可靠的检出。工业异常检出旨在从正常的样本中检测异常的、有缺陷的情况。工业异常检测主要面临的挑战:
1)难以获取大量异常样本
2)正常样本和异常样本差异较小
3)异常的类型不能预先得知
这些挑战使得很难使用传统的分类算法训练,需要提出特殊的方法来应对处理。
1.数据集介绍
挑战
•在玻璃瓶生产过程中,由于加工工艺的复杂性,无法避免产生各种的缺陷产品,给产品质量带来严重隐患。
• 为了提高产品出厂的品质,厂家通常依靠大量的人工检查来挑除废品。
但人工检查速度慢,需要占用大量的人力、物力资源和场地资源,而且人眼长时间工作后,极易出现疲劳和疏忽的情况,无法高效保证产品质量。
• 玻璃瓶缺陷类型细微,且易反光,增加检测难度。
缺陷类型:cap
数据集数量:125张