基于Yolov5的玻璃瓶盖缺陷检测

本文介绍了基于YOLOv5的玻璃瓶盖缺陷检测方法,包括数据集准备、模型训练和性能评价。针对玻璃瓶生产中的缺陷问题,通过split_train_val.py和voc_label.py处理数据,使用yolov5s_bottleneck.yaml进行模型配置和训练,以解决人工检查效率低下的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.数据集介绍

 1.1 通过split_train_val.py得到trainval.txt、val.txt、test.txt

1.2 通过voc_label.py得到适合yolov5训练需要的

2.基于yolov5的瓶盖缺陷识别

2.1配置 bottleneck.yaml

2.2 修改yolov5s_bottleneck.yaml

2.3 训练瓶盖缺陷模型

3.性能评价


1. 工业缺陷检测简介

在工业生产中,质量保证是一个很重要的话题, 因此在生产中细小的缺陷需要被可靠的检出。工业异常检出旨在从正常的样本中检测异常的、有缺陷的情况。工业异常检测主要面临的挑战:

1)难以获取大量异常样本
2)正常样本和异常样本差异较小
3)异常的类型不能预先得知


这些挑战使得很难使用传统的分类算法训练,需要提出特殊的方法来应对处理。

1.数据集介绍

挑战

在玻璃瓶生产过程中,由于加工工艺的复杂性,无法避免产生各种的缺陷产品,给产品质量带来严重隐患。

• 为了提高产品出厂的品质,厂家通常依靠大量的人工检查来挑除废品。

但人工检查速度慢,需要占用大量的人力、物力资源和场地资源,而且人眼长时间工作后,极易出现疲劳和疏忽的情况,无法高效保证产品质量。

• 玻璃瓶缺陷类型细微,且易反光,增加检测难度。

缺陷类型:cap

数据集数量:125张

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值