RT-DETR算法优化改进:backbone改进 | 轻量化之王MobileNetV4 开源 ,效果秒杀MobileNetV3等

本文介绍了将MobileNetV4应用于RT-DETR的backbone,通过创新的通用倒瓶颈搜索块和优化的神经结构搜索,提升了模型的效率和精度。MobileNetV4在保持高性能的同时,还引入了蒸馏技术,适用于移动设备。通过修改RT-DETR的相关文件,实现了与MobileNetV4的无缝集成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 💡💡💡创新点:轻量化之王MobileNetV4 开源 | Top-1 精度 87%,手机推理速度 3.8ms,原地起飞!

MobileNetV4(MNv4),其特点是针对移动设备设计的通用高效架构。创新1):引入了通用倒瓶颈(UIB)搜索块,这是一个统一且灵活的结构,它融合了倒瓶颈(IB)、ConvNext、前馈网络(FFN)以及一种新颖的额外深度可分(ExtraDW)变体;创新2):一种优化的神经结构搜索(NAS)配方,提高了MNv4的搜索效率;创新3):为了进一步提升准确度,引入了一种新颖的蒸馏技术。

 💡💡💡如何跟rtdetr结合:替代rtdetr的backbone

 

### 改进YOLOv8主干网络的方法 为了使YOLOv8更加轻量化并提升检测精度,可以采用来自RT-DETR的PPHGNetV2作为新的特征提取器[^1]。这种方法不仅能够增强模型的表现力,还能减少计算资源的需求。 #### 替换原有主干网络 原有的YOLOv8主干网络被PPHGNetV2所替代。PPHGNetV2是一种基于Transformer架构设计而成的新颖骨干网路,它具有更强的数据表达能力和更低的参数复杂度。通过这种替换操作,可以在不显著增加额外开销的情况下获得更好的性能表现[^2]。 #### 调整超参数设置 当引入新类型的主干之后,可能需要重新调整一些训练过程中的超参数配置,比如学习率、批量大小等。这些改变有助于让整个系统更好地适应新型号带来的变化,并最终体现在更高的mAP得分上[^3]。 #### 训练与验证流程 完成上述修改后,按照常规方式准备数据集并对改进后的YOLOv8进行充分训练。期间应密切关注损失函数的变化趋势以及各类评估指标的结果反馈。经过多轮迭代优化直至收敛稳定为止。最后,在测试集上面检验最终版模型的实际效能是否达到了预期目标——即实现了更高精度的同时也保持了良好的运行效率。 ```python import torch from yolov8 import YOLOv8 from pphgnet_v2 import PPHGNetV2 def replace_backbone(yolo_model_path, new_backbone=PPHGNetV2()): # 加载原始YOLOv8模型权重 yolo = YOLOv8() checkpoint = torch.load(yolo_model_path) yolo.load_state_dict(checkpoint['model']) # 将原主干部分替换成PPHGNetV2 yolo.backbone = new_backbone return yolo # 使用示例代码片段 if __name__ == "__main__": improved_yolov8 = replace_backbone('path_to_original_weights.pth') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值